Разработка технологии электротермического получения силикоалюминия с использованием малозольных восстановителей (124056)

Посмотреть архив целиком

На правах рукописи



ГЛАЗАТОВ

Александр Николаевич



Разработка технологии электротермического получения

силико-алюминия с использованием малозольных восстановителей




Специальность 05.16.02 – Металлургия черных, цветных

и редких металлов







Автореферат

диссертации на соискание ученой степени

кандидата технических наук





Санкт – Петербург 2007


Работа выполнена в ООО "Институт Гипроникель"


Научный руководитель – 

кандидат технических наук, доцент А.Ю. Баймаков


Официальные оппоненты:

доктор технических наук,

генеральный директор

ООО "ИНАЛМЕТ" Б.П. Онищин

кандидат технических наук, доцент В.Ф. Серебряков


Ведущая организация – Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт цветных металлов "ГИНЦВЕТМЕТ".


Защита диссертации состоится "__"_________2007 г

в ч мин на заседании диссертационного совета Д 212.224.03 при Санкт-Петербургском государственном горном институте имени Г. В. Плеханова (техническом университете) по адресу: 199106 Санкт-Петербург, 21-я линия, ом 2, ауд. № ___

С диссертацией можно ознакомиться в библиотеке Санкт-Петербургского государственного горного института.

Автореферат разослан "__" _________ 2007 г.

Ученый секретарь

диссертационного совета

д.т.н., доцент В.Н. Бричкин


ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ0


Актуальность темы. Значительная часть получаемого в электролизерах алюминия используется для получения литейных алюминиево-кремниевых сплавов. Между тем, существует принципиально другая возможность приготовления этих сплавов на основе силикоалюминия, полученного карботермическим восстановлением оксидного сырья в электропечах. Этот способ осуществлялся в Советском Союзе на Украине, на Днепровском алюминиевом заводе, ныне Запорожском алюминиевом комбинате (ЗАЛК) на печах мощностью 22,5 мВт.

К достоинствам способа электротермической переработки алюмосиликатного сырья на силикоалюминий относятся: совмещение энергоемких производств алюминия и кремния в одном плавильном агрегате и вовлечение в переработку большой группы непригодных для производства глинозема низкомодульных видов сырья (кианитов, силлиманитов, в т.ч. дистен-силлиманитовых концентратов (ДСК), каолинов, низко железистых бокситов и др.). По сравнению с электролизерами руднотермические печи характеризуются значительно более высокой удельной производительностью (т/м2 площади), низкими капитальными и эксплуатационными затратами.

Недостатками этой технологии являются низкое извлечение металла из сырья в рафинированный сплав (РС), составляющее по результатам эксплуатации промышленных трехфазных печей ~70-71% и высокое содержание примесей (железа, титана и др.), переходящих в РС из шихтовых материалов.

Наиболее предпочтительным восстановителем для получения качественного по примесям РС является нефтяной кокс из-за низкого содержания в нем золы. Однако степень использования нефтяного кокса сдерживается его повышенной электропроводностью и низкой реакционной способностью. В этой связи решающее значение при использовании повышенных количеств нефтяного кокса имеет разработка способов его активизации.

Цель работы. Улучшение технологических показателей плавки, повышающих конкурентоспособность электротермического способа, при использовании повышенного количества нефтяного кокса, а также других активных малозольных восстановителей.

Методы исследований. Лабораторные исследования восстановимости, кинетики восстановления, удельного электросопротивления (УЭС) шихт и прочности брикетов, опытно-заводские испытания по выплавке силикоалюминия и анализ данных работы промышленных печей при использовании шихт с различными восстановителями.


Основные положения, выносимые на защиту:


1. Степень восстановления алюмосиликатов углеродом обусловлена соотношением Al:Si в шихте, продолжительностью пребывания шихты в зонах низких и высоких температур, составом минерального сырья и восстановителя, летучие компоненты которого не участвуют в восстановлении, а образуемый пироуглерод повышает скорость протекания процесса.

2. Улучшение показателей плавки алюмосиликатов достигается на открытой и герметизированной печи за счет использования в составе восстановителя кокса низкотемпературного термоконтактного крекинга и повышенного содержания нефтяного кокса с введением в состав брикетов активирующих добавок сульфатов аммония и алюминия, а также применением "рыхлителей" шихты – гранул лигнина и древесной щепы.

Научная новизна

1. Показано, что на начальной стадии восстановления углерод шихты частично или полностью связывается в SiC. При содержании Si в выплавляемом силикоалюминии выше 60% основным восстановителем оксида алюминия является SiC, ниже 60% – SiC и свободный углерод шихты (Ссвоб. шихты), при взаимодействии с которым могут образовываться расплавы с оксикарбидными "комплексами" алюминия переменного состава.

2. Установлено, что с уменьшением времени пребывания шихты в низкотемпературных зонах печи (около 1600оС) снижается степень образования расплавов с оксикарбидными "комплексами", а в зонах с высокой температурой (2000оС) – образования карбидов алюминия и кремния. При этом в обоих случаях степень восстановления шихты повышается.

3. Установлены кинетические зависимости процесса восстановления шихт с различным составом восстановителя. Определена энергия активации процесса восстановления (3,33·102 кДж/моль), которая свидетельствует о протекании процесса в кинетической области.

4. Установлена взаимосвязь между содержанием в восстановителе кокса низкотемпературного термоконтактного крекинга (КНТК) и электросопротивлением шихты и ее восстановительной способностью.

Практическая значимость

1. Разработаны способы значительного улучшения технологических показателей рудовосстановительного процесса при одновременном улучшении качества выплавляемого силикоалюминия по содержанию примесей, в т.ч:

увеличения производительности печей по выпуску РС на ~29%;

повышения извлечения алюминия и кремния до ~92%;

снижения удельного расхода электроэнергии на 18% и минеральной части шихты на ~29%;

повышения содержания нефтяного кокса в составе восстановителя до 60-80 % по Снлт путем:

введения в состав брикетов добавок солей (NH4)2SO4 и Al2SO4;

использования в качестве "рыхлителя" окускованного лигнина и древесной щепы. Добавка "рыхлителей" к брикетам позволяет использовать существующий распад электродов на печи, не прибегая к ее реконструкции.

2. Предложен новый эффективный и "чистый" по содержанию примесей восстановитель – КНТК, содержащий оксиды никеля и ванадия, металлы которых являются легирующими компонентами в литейных сплавах.

3. Предложен способ расчета дозировки (Cнлт.)брик., основанный на результатах анализа содержаний нелетучего и общего углерода в составе восстановителя.

4. Показана целесообразность герметизации печей при выплавке силикоалюминия из шихт с "рыхлителями", которая позволяет использовать в качестве восстановителя 100% нефтяного кокса при одновременном снижении общей дозировки Снлт в шихте.

Апробация работы. Основные результаты работы доложены на семинаре ЭКСПО "Высокотемпературные реакторы" (2006г., г. Санкт-Петербург) и Всероссийских научно-технических конференциях: "Электротермия-2006" в СПбГТИ (ТУ) и "Ресурсосберегающие и природозащитные технологии в производстве глинозема, алюминия, магния и сопутствующей продукции" в ВАМИ (2006г., г.Санкт-Петербург) и др.

Публикации. Материалы диссертации опубликованы в 18-ти печатных работах, получено 4 авторских свидетельства на изобретения.

Структура и объем работы. Диссертация изложена на 155 страницах, состоит из введения, 5 разделов с выводами, заключения по работе и включает 31 рисунок, 27 таблиц, а также список литературы из 159 наименований.

Во введении обоснована актуальность, показана научная новизна, практическая значимость, сформулированы цель работы и основные положения, выносимые на защиту.

В первом разделе приведены результаты анализа литературных данных о способах получения алюминиево-кремниевых сплавов, в том числе о процессе углетермического восстановления оксидов кремния и алюминия. Определены задачи работы.

Во втором разделе изложено описание использованных методик. Лабораторные исследования восстановимости (степени восстановления) шихты проводили на печи Таммана. Методика имитировала последовательный сход шихты из колошниковой в реакционную зону промышленной печи. Шихты выдерживали в печи при температуре 2000оС в течение 20 минут (в отдельных опытах использовали другие параметры). Кинетику восстановления изучали на миниатюрной печи с графитовым нагревателем с малой инерционностью и высокой скоростью нагрева и охлаждения (до 500 о/мин) с системой для сбора газа. Прочность высушенных (105оС) и прокаленных (1000оС) брикетов определяли на лабораторном прессе при давлении 19,6 мПа. УЭС шихт определяли методом измерения падения напряжения при постоянном токе. Опытно-заводские испытания проводили на однофазной двухэлектродной открытой и герметизированной (со сводом) печи с угольной подиной мощностью 200 кВА с графитированными электродами диаметром 150 мм опытного завода Всесоюзного (Всероссийского) алюминиево-магниевого института (ВАМИ). Все шихты рассчитывали на получение в силикоалюминии 63% Al. Сульфатные добавки дозировали совместно с другими компонентами при подготовке брикетов. Гранулы лигнина готовили с 20% масс. каолина.


Случайные файлы

Файл
137469.doc
22596-1.rtf
181969.rtf
186551.rtf
WARS.DOC




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.