Проектирование траектории перемещения роботов (123908)

Посмотреть архив целиком

Федеральное агентство по образованию

Пермский Государственный Технический Университет













Реферат:

«ПРОЕКТИРОВАНИЕ ТРАЕКТОРИЙ ПЕРЕМЕЩЕНИЯ РОБОТОВ»



ВВЕДЕНИЕ


Мы изучили, каким образом можно описать задачу робототехнического манипулирования при помощи однородных преобразований; теперь нужно рассмотреть методы проектирования траекторий перемещения робота.


Рис. 4.7.1. Робот, размещающий МОП-пластины. (С разрешения PRI.)


Нужно описать желаемые движения манипуляционных роботов либо в пространстве обобщенных координат, либо в трехмерном рабочем пространстве, либо в координатах схвата в зависимости от того, интересуют ли нас зависимости от времени положения, ориентации, линейной скорости, угловой скорости, линейного ускорения и углового ускорения (рис. 4.7.1).

С точки зрения интересов человека-оператора робототехническая система должна быть способна позаботиться о деталях траектории движения, как только введены преобразования, описывающие задачу. Например, оператор может просто ввести желаемое кинематическое положение схвата робота для манипулирования объектом и предоставить системе управления роботом планировать форму траектории перемещения и такие детали, как профили изменения скорости и ускорения. Это определенным образом связано с так называемым программированием на уровне задачи, которое будет рассмотрено и гл. 9. Мы же обратимся к вопросу о том, каким образом траектории перемещения роботов интерпретируются управляющей ЭВМ и каким образом управляющая ЭВМ в действительности строит такие траектории и выдает команды роботу на выполнение желаемых задач. Цифровой природой управляющей ЭВМ обусловлено то, что генерация траекторий осуществляется дискретным образом. Так, генерация каждой дискретной точки на траектории движения происходит за так называемое время просчета траектории. Точки могут генерироваться с частотой 10—300 Гц в зависимости от того, какая частота вычисления точек траектории может быть достигнута на управляющей ЭВМ. Задача состоит в том, чтобы переместить схват робота из начального кинематического положения Н(0) в заданное кинематическое положение H(t) за время t. Естественным представляется описать движение гораздо более детально, чем определить лишь начальную и конечную точки, с тем чтобы избежать столкновений с предметами, находящимися в рабочей области. Таким образом, определяются промежуточные точки, в которых должно быть найдено кинематическое положение схвата робота. Для более подробно описанных траекторий должны быть определены значения обобщенной скорости и обобщенного ускорения. Очевидно, чтобы получить изменяющееся во времени кинематическое положение схвата робота Н(t), необходимо прибегнуть к множеству изменяющихся во времени углов в сочленениях, или, иначе, к зависящему от времени вектору углов в сочленениях Q(t), такому, что


(4.7.1)


где (t) - не что иное, как зависящее от времени решение об- ратной задачи кинематики с начальным Н(0) и конечным Н(t) кинематическими положениями схвата робота.

Далее мы опишем множество способов, применяемых для планирования и генерации желаемых векторов углов в сочленениях манипулятора.


КУБИЧЕСКИЕ ЗАКОНЫ ИЗМЕНЕНИЯ УГЛОВ В СОЧЛЕНЕНИЯХ


Простейший и наиболее часто используемый способ определения закона изменения угла в сочленении i(t) - это определение начального и конечного значений i(t) и i(t), которые обычно принимают следующие значения:


i(0) = i0 (4.7.2)

i(tf) = if (4.7.3)

i(0) = 0 (4.7.4)

i(tf) = 0 (4.7.5)


где tf — конечный момент времени, а к схвату робота предъявляется требование, чтобы он находился в состоянии покоя в начальный момент времени t=0 и достигал состояния покоя в момент времени t = t.

Условиям (4.7.2) — (4.7.5) могут удовлетворить многочлены третьей степени от времени, т. е.


i(t)= i0 + a1it + a2it2 + a3it3, (4.7.6)


такие, что


if = i0 + a1itf + a2it2f + a3it3f, (4.7.7) 0 = a1i, (4.7.8)

0 = 2a2itf + 3a3itf, (4.7.9)


откуда a2i и a3i получаются равными


a2i = 3(if - i0 ) t -2f, (4.7.10)

a3i = 2(if - i0 ) t -3f. (4.7.11)


Если начальная и конечная скорости не равны нулю, как в ситуации с роботом, отслеживающим движение конвейера, коэффициенты полинома получаются из условий выполнения следующих ограничений:


i(0) = i0 , (4.7.12)

i(tf) =if. (4.7.13)


После этого легко определить коэффициенты в формуле (4.7.6):


aix = i0 , (4.7.14)

a2i = 3(if - i0 ) t -2f - i0 tf -1 - if tf -1 (4.7.15)

a3i = 2(if - i0 ) t -3f + (i0 + if), (4.7.16)


Заметим, что соотношения (4.7.14) — (4.7.16) носят достаточно общий характер, чтобы быть применимыми к любой промежуточной точке между начальной и конечной точками траектории. Однако вследствие требования непрерывности положения, скорости и ускорения решение уравнений относительно коэффициентов становится более сложным.

Пример 4.7.1

Найдите коэффициенты для двух кубических законов изменения углов в сочленениях, приняв равными продолжительности прохождения по обоим участкам траектории. Решение. Заметим, что в этом случае для первого и второго участков траектории движения


1(t)= a10 + a11t + a12t2 + a13t3, (4.7.17)

2(t)= a20 + a21t + a22t2 + a23t3. (4.7.18)


Ограничения имеют вид

1(0) = 10, 2(0)=1(tf1); (4.7.19) 1(t)=10, 2(0)=1(tf1); (4.7.20)

2(tf2)=2f, 2(tf2)=2f; (4.7.21)

1(0) = 10, 2(0)= 1(tf1); (4.7.22)


Из приведенных восьми формул могут быть найдены восемь коэффициентов a10, a11, a12, a13, a20, a21, a22, и a23 (см.домашнее задание 6)


Рис. 4.7.5. Сложное движение манипулятора.


ОБЩИЕ АСПЕКТЫ ПЛАНИРОВАНИЯ ТРАЕКТОРИЙ


Вообще говоря, при планировании траектории робота нужно учитывать следующие обстоятельства.

1. Когда схват поднимает предмет, его движение должно быть направлено от опорной поверхности, чтобы избежать столкновения с ней.

2. Конечная точка подъема предмета должна лежать на нормали к поверхности, а начало системы координат схвата должно пройти через эту точку. Таким образом, будет обеспечено допустимое движение схвата. Контроль за скоростью, с которой должен подниматься предмет, может осуществляться путем слежения за временем, требуемым для перехода в эту точку.

3. Расстояние от конечной точки подъема до опорной поверхности рекомендуется выбирать равным не меньше 25 % длины последнего звена робота (0.25d6 + длина инструмента) (рис. 4.8.1).

4. Требования 1 - 3 относятся и к начальной точке спуска, т. е. схват должен перемещаться в направлении, перпендикулярном поверхности, и замедляться при подходе к опорной поверхности.

5. Из приведенных выше соображений следует, что на каждой траектории робота имеются четыре типа точек - начальная точка, конечная точка подъема, начальная точка спуска, конечная точка (рис. 4.8.2).

Таким образом, на процесс планирования траектории можно наложить следующие ограничения.

1. Начальное положение фиксировано.

2. Начальная скорость обычно равна нулю.

3. Начальное ускорение обычно равно нулю.

4. Конечное положение фиксировано.

5. Конечная скорость обычно равна нулю.

6. Конечное ускорение обычно равно нулю.

7. Конечная точка подъема должна находиться от опорной поверхности на расстоянии 0.25 d6 + длина инструмента.

8. Начальная точка спуска должна находиться от опорной поверхности на расстоянии 0.25 d6 + длина инструмента.



Рис. 4.8.1. Рекомендуемая конечная точка подъема.


Рис. 4.8.2. Типичная траектория движения i-го сочленения.


К перечисленным выше ограничениям можно также добавить, ограничения на скорость и ускорение в промежуточных положениях, т. е. в точках подъема и спуска. Однако, опустив эти ограничения, мы будем иметь восемь ограничений, которые можно было бы удовлетворить полиномом с неизвестными коэффициентами не менее чем седьмой степени. Так, для любого угла в сочленении i можно записать


i(t) =ani tn, (4.8.1)


где ani - элементы матрицы размера 8 x i.

Так как это выражение - полином седьмой степени, возможно, он будет иметь значительное число экстремумов (максимумов и минимумов), что было бы нежелательно для траекторий перемещения роботов. Кроме того, вычисление всех неизвестных коэффициентов может занять много времени (если i = 6,имеем 48 коэффициентов).


Ограничения, относящиеся к траекториям сочленений


Описание ограничения

Уравнения ограничения

1


2


3


4



5


6


7


8


9


10


11


12


13


14

Начальное положение схвата


Начальная скорость робота


Начальное ускорение робота

Конечное положение робота при захвате



Непрерывность по положению в момент t1


Непрерывность по скорости в момент t1


Непрерывность по ускорению в момент t1


Начальное положение робота при установке

Непрерывность по положению в момент t2


Непрерывность по скорости в момент t2


Непрерывность по ускорению в момент t2


Конечное положение робота


Конечная скорость робота


Конечное ускорение робота

i(t0) = *i0

i(t0) = *i0

i(t0) = *i0

i(t1) = *i1

i(t1-) = i(t1+)

i(t1-) = i(t1+)

i(t1-) = i(t1+)

i(t2) = *i2

i(t2-) = i(t2+)

i(t2-) = i(t2+)

i(t2-) = i(t2+)

i(t3) = *i3

i(t3) = *i3

i(t3) = *i3


Случайные файлы

Файл
3949.doc
5251-1.rtf
16348-1.rtf
109818.doc
180231.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.