Основы коксования пека (123548)

Посмотреть архив целиком













Основы коксования пека


Введение


Основные виды углеродистого сырья коксохимического (каменноугольного) происхождения, используемого для производства углеграфитовых материалов - каменноугольный пек и пековый кокс. Необходимость расширения и совершенствования их производства диктуется главным образом нуждами черной и цветной металлургии. Пек и пековый кокс используют в качестве:

связующего (пек) в производстве графитированных изделий, в том числе крупногабаритных специальных электродов для большегрузных дуговых сталеплавильных печей, а также углеграфитовых конструкционных материалов; в производстве углеграфитовых блоков повышенной стойкости, безводной легочной массы для доменных печей, смолодоломитовых огнеупоров для футеровки сталеплавильных конверторов;

связующего (пек) и наполнителя (пековый кокс) при получении анодной массы для электролизеров в производстве алюминия;

сырья (пек и пековый кокс) для производства изделий электротехнической промышленности и др.

Сырьем для производства пекового кокса является высокотемпературный пек. Явления, происходящие при коксовании пека, представляют собой ряд сложных химических, физических, физико-химических, структурных и термомеханических процессов, сопровождающихся изменением физико-химических свойств исходного вещества - высокотемпературного пека - при переходе его в полукокс и кокс.

Процесс коксования пека в печах можно разделить на отдельные стадии, соответствующие температурным интервалам. Наиболее важная стадия, оказывающая решающее влияние на характер процесса, выход и качество кокса, протекает в температурном интервале 450-600°С. В этой стадии происходит дистилляция легкокипящих фракций, пиролиз основной массы пека с образованием газообразных и жидких продуктов, затвердевание сильновязкого утяжеленного остатка и образование полукокса. Затем в соответствии с повышением температуры происходит выделение летучих веществ, преимущественно богатых водородом, появляются усадочные трещины, коксовый массив отходит от стен камеры и приобретает свойства готового продукта.

Изменение химического состава пека в процессе коксообразования, выражающееся в нарастании содержания углерода и уменьшении водорода, можно проследить по данным об элементном составе:


С Н N S O2

Высокотемпературный пек 92,73 4,42 1,43 0,82 0,60

Полукокс. . . . . 93,81 3,28 1,39 0,68 0,84

Кокс 96,52 0,98 1,22 0,58 0,70 .


Некоторая часть азотсодержащих соединений пека при коксовании не изменяется или превращается в аммиак. Значительное количество азота остается в коксе. Сера пека частично выделяется с газом в виде сероводорода, частично распределяется в пековой смоле и коксе в виде сероорганических соединений.

Изменение состава пекококсового газа по мере повышения температуры коксования характеризуется уменьшением содержания метана и резким увеличением содержания водорода. Это указывает на то, что до 500°С протекают процессы пиролиза и крекинга, сопровождающиеся выделением метана, при более высокой температуре основной реакцией становится дегидрирование, которое приводит к образованию продуктов полимеризации и поликонденсации.

Большая часть пековой смолы выделяется до 550°С при малом количестве образовавшегося газа. По-видимому, до этой температуры осуществляется дистилляция термоустойчивых высококипящих фракций пека, в состав которых входят такие соединения, как коронен, пицен и др.

С повышением температуры отбора смолы увеличиваются плотность и молекулярная масса. Следовательно, возрастает содержание более конденсированных ароматических углеводородов.

Нелетучий остаток-полукокс, образовавшийся в период коксования пека, с повышением температуры претерпевает значительные изменения. Меняется элементный состав пека, повышается содержание в нем углерода и уменьшается содержание водорода.

При 600°С и выше отмечается интенсивный рост отношения С/Н, что может свидетельствовать об усилении поликонденсации. До указанной температуры это явление не наблюдается; при исследовании твердых остатков с помощью ЭПР установлена повышенная концентрация ПМЦ (свободных радикалов и неспаренных электронов). По-видимому, при температурах до 600°С происходит максимальное разложение пекового вещества, выражающееся в отщеплении метальных групп и водорода. Возможно, имеет место и деструкция продуктов уплотнения отдельных ароматических циклов, что создает условия для роста ароматических сеток.

Интервал температур 550-600°С характеризуется также увеличением плотности, резким уменьшением электросопротивления и проявлением механических свойств кокса, что можно объяснить активным протеканием процессов внутреннего структурирования его вещества, т.е. упаковкой ароматически высококонденсированных молекул в пакеты.

Можно констатировать, что с повышением температуры нагрева ядра молекул, состоящие из бензольных колец, подобных монослоям в графите, увеличиваются в размере, освобождаются от боковых атомов и групп, слагаются в стопки, образуя структурные единицы высокой степени упорядоченности. Однако их нельзя считать кристаллами, так как они не имеют предельно упорядоченной трехмерной структуры, присущей кристаллитам графита.

Наличие в пеке многих термоустойчивых ароматических углеводородов затрудняет переход от линейной к сотообразной конденсации по сравнению с другими углеродистыми веществами.

При прокаливании и графитировании пекового кокса происходят дальнейшие значительные внутримолекулярные изменения, направленные в сторону повышения упорядоченности структуры, увеличиваются размеры пакетов, количество блочного углерода, заметно уменьшается межплоскостное расстояние. Одновременно сглаживаются различия в свойствах кокса в зависимости от технологических условий - конечной температуры и скорости коксования, продолжительности перестоя.

Особенности исходного сырья сказываются частично на сырых и прокаленных коксах. Высокотемпературный пек из пековой смолы ухудшает способность кокса к уплотнению при прокаливании, поэтому необходимо строго дозировать количество идущих на коксование высокотемпературных пеков, полученных из среднетемпературного пека и пековой смолы.

У нас в стране пековый кокс производят в специальных камерных динасовых печах (рис.1), имеющих некоторые конструктивные отличия от печей для коксования угля. Эти отличия заключаются в лучшей герметизации стен кладки камер коксования больших размерах газоотводящих отверстий в перекрытиях камер и т.д.


Рис.й. Схема пекококсовой печи системы Гипрококса


Печи имеют индивидуальную отопительную систему для каждого обогревательного простенка и рассчитаны на обогрев коксовым газом. Толщина стен 170-200 мм позволяет осуществлять надежную перевязку и герметизацию всех вертикальных швов, выходящих в камеру коксования. Верхний уровень обогрева располагается на высоте 600-800 мм от свода камеры.

Размеры камеры коксования: длина 13120 мм, высота 3000 мм, ширина 450 мм. Температура в контрольных вертикалах с машинной стороны поддерживается на уровне 1220 - 1310°С, с коксовой 1260 - 13400С.

Размеры камеры коксования: длина 13120 мм, высота 3000 мм, ширина 450 мм. Температура в контрольных вертикалах с машинной стороны поддерживается на уровне 1220 - 1310°С, с коксовой 1260 - 13400С.

Загрузка пека (18,0-19,5 т) осуществляется через одно или два загрузочных отверстия с дифференцированной скоростью, подобранной таким образом, чтобы в камере поддерживалось минимальное количество жидкой фазы. Период загрузки 5-6 ч.

Следует отметить, что способу загрузки пека в печи на коксохимических предприятиях уделяется много внимания, так как он влияет на поведение пека в камере, определяет производительность установки срок службы печей и качество пекового кокса. В первые годы ввода в эксплуатацию пекококсовых печей загрузка их производилась непрерывно в течение 2,5-3,5 ч по кольцевому пекопроводу из установленных на верху печей мерников. На практике этот способ себя не оправдал из-за малой загрузки пека (в результате его вспучивания), большой усадки коксового пирога, заграфичивания сводов, стен камер, трудности выдачи кокса.

В дальнейшем был разработан в нескольких вариантах новый способ, заключающийся в снижении интенсивности загрузки. Последнее хотя и повлекло за собой удлинение периода загрузки, но позволило увеличить общее количество загружаемого пека, улучшить теплотехнические условия для огнеупорной кладки, повысить использование объема камер и производительность печей. Варианты загрузки касаются в основном порядка и места подачи пека в камеру. Была разработана технологическая схема, отличительной особенностью которой является взаимосвязь схемы загрузки и серийности выдачи. Дозаторы установлены на печах стационарно и связаны с определенным и постоянным количеством печей. Дозатор 1, предназначенный для регулирования расхода пека по двум линиям, оборудован двумя переключателями расхода 2. На каждой линии установлены расходомеры 3. Для распределения пека по печам служат многоходовые краны 4. Загрузочные патрубки, стояки и термокомпенсаторы обозначены на схеме позициями 3-7. [1, c.98]

Длительная промышленная эксплуатация на ряде коксохимических предприятий показала эффективность системы и ее надежность






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.