Извлечение кадмия из колошниковой пыли (123145)

Посмотреть архив целиком

ВВЕДЕНИЕ


К числу кадмийсодержащих материалов, получаемых в качестве побочных продуктов при переработке цинка, свинца и меди, относится пыль, образующаяся в печах для обжига, в сушильных печах и в установках для спекания. Сюда же относятся цинковая пыль, получаемая при дистилляции цинка, кадмиевая фракция получая конечный продукт — кадмий высокой чистоты. Кадмий высокой чистоты для специальных целей может быть получен при использовании методов вакуумной дистилляции, зонной рекристаллизации, ионного обмена и других.



Глава 1. КАДМИЙ И ЕГО ХАРАКТЕРИСТИКА


КА́ДМИЙ (лат. Cadmium), Cd (читается «кадмий»), химический элемент с атомным номером 48, атомная масса 112,41.

Природный кадмий состоит из восьми стабильных изотопов: 106Cd (1,22% ), 108Cd (0,88%), 110Cd (12,39%), 111Cd (12,75%), 112Cd (24,07%), 113Cd (12,26%), 114Cd (28,85%) и 116Cd (12,75%). Расположен в 5 периоде в группе IIВ периодической системы элементов. Конфигурация двух внешних электронных слоев 4s2p6d105s2. Степень окисления +2 (валентность II).

Радиус атома 0,154 нм, радиус иона Cd 2+0,099 нм. Энергии последовательной ионизации — 8,99, 16,90, 37,48 эВ. Электроотрицательность по Полингу 1,69.

История открытия. Открыт немецким профессором Ф. Штромейером в 1817. Провизоры Магдебурга при изучении оксида цинка ZnO заподозрили в нем примесь мышьяка. Ф. Штромейер выделил из ZnO коричнево-бурый оксид, восстановил его водородом и получил серебристо-белый металл, который получил название кадмий (от греческого kadmeia — цинковая руда).

Нахождение в природе. Содержание в земной коре 1,35·10–5 % по массе, в воде морей и океанов 0,00011 мг/л. Известно несколько очень редких минералов, например, гринокит GdS, отавит CdCO3, монтепонит CdO. Кадмий накапливается в полиметаллических рудах: сфалерите (0,01-5%), галените (0,02%), халькопирите (0,12%), пирите (0,02%), блеклых рудах и станнине (до 0,2%).

Получение. Основные источники кадмия — промежуточные продукты цинкового производства, пыль свинцовых и медеплавильных заводов. Сырье обрабатывают концентрированной серной кислотой и получают СdSO4 в растворе. Из раствора Cd выделяют, используя цинковую пыль:


CdSO4 + Zn = ZnSO4 + Cd



Полученный металл очищают переплавкой под слоем щелочи для удаления примесей цинка и свинца. Кадмий высокой чистоты получают электрохимическим рафинированием с промежуточной очисткой электролита или методом зонной плавки.

Физические и химические свойства

Кадмий — серебристо-белый мягкий металл с гексагональной решеткой (а = 0,2979, с = 0,5618 нм). Температура плавления 321,1 °C, кипения 766,5 °C, плотность 8,65 кг/дм3. Если кадмиевую палочку изгибать, то можно услышать слабый треск — это трутся друг о друга микрокристаллики металла. Стандартный электродный потенциал кадмия —0,403 В, в ряду стандартных потенциалов он расположен до водорода.

В сухой атмосфере кадмий устойчив, во влажной постепенно покрывается пленкой оксида CdO. Выше температуры плавления кадмий горит на воздухе с образованием оксида CdO бурого цвета:


2Сd + O2 = 2CdO


Пары кадмия реагируют с парами воды с образованием водорода:


Cd + H2O = CdO + H2


По сравнению со своим соседом по группе IIB — Zn кадмий медленнее реагирует с кислотами:


Сd + 2HCl = CdCl2 + H2


Легче всего реакция протекает с азотной кислотой:


3Cd + 8HNO3 = 3Cd(NO3)2 + 2NO + 4H2O



Со щелочами кадмий не реагирует.

В реакциях может выступать в качестве мягкого восстановителя, например в концентрированных растворах он способен восстанавливать нитрат аммония до нитрита NH4NO2:


NH4NO3 + Cd = NH4NO2 + CdO


Кадмий окисляется растворами солей Cu (II) или Fe (III):


Cd + CuCl2 = Cu + CdCl2;

2FeCl3 + Cd = 2FeCl2 + CdCl2


Выше температуры плавления кадмий реагирует с галогенами с образованием галогенидов:


Cd + Cl2 = CdCl2


С серой и другими халькогенами образует халькогениды:


Cd + S = CdS


С водородом, азотом, углеродом, кремнием и бором кадмий не реагирует. Нитрид Cd3N2 и гидрид CdH2 получают косвенными путями.

В водных растворах ионы кадмия Cd2+ образуют аквакомплексы [Cd(H2O)4]2+ и [Cd(H2O)6]2+.

Гидроксид кадмия Cd(OH)2 получают добавлением к раствору соли кадмия щелочи:


СdSO4 + 2NaOH = Na2SO4 + Cd(OH)2Ї


Гидроксид кадмия в щелочах практически не растворяется, хотя при длительном кипячении в очень концентрированных растворах щелочей зафиксировано образование гидроксидных комплексов [Cd(OH)6]2–. Таким образом, амфотерные свойства оксида CdO и гидроксида Cd(OH)2 кадмия выражены гораздо слабее, чем у соответствующих соединений цинка.

Гидроксид кадмия Cd(OH)2 за счет комплексообразования легко растворяется в водных растворах аммиака NH3:


Cd(OH)2 + 6NH3 = [Cd(NH3)6](OH)2


Применение

40% производимого кадмия используется для нанесения антикоррозионных покрытий на металлы. 20% кадмия идет на изготовление кадмиевых электродов, применяемых в аккумуляторах, нормальных элементах Вестона. Около 20% кадмия используется для производства неорганических красящих веществ, специальных припоев, полупроводниковых материалов и люминофоров. 10% кадмия — компонент ювелирных и легкоплавких сплавов, пластмасс.

Физиологическое действие Пары кадмия и его соединения токсичны, причем кадмий может накапливаться в организме. В питьевой воде ПДК для кадмия 10 мг/м3. Симптомы острого отравления солями кадмия — рвота и судороги. Растворимые соединения кадмия после всасывания в кровь поражают центральную нервную систему, печень и почки, нарушают фосфорно-кальциевый обмен. Хроническое отравление приводит к анемии и разрушению костей.


Глава 2. РАФИНИРОВАНИЕ ЦИНКА


Оксид цинка обычно представляет грубый белый или сероватый порошок, имеющий разнообразное применение, включая как применение в качестве катализатора - активатора, как пигмента, так и диетической добавки, а также в области полупроводников. Оксид цинка встречается в промышленных побочных продуктах (субпродуктах), включая потоки отработанных материалов, как например, летучая зола и пыль, уносимая газами (колошниковая пыль). В технике известны способы регенерации оксидов цинка, включая регенерацию (восстановление) окиси цинка из промышленных отработанных материалов. Эти известные способы включают выщелачивание неорганической кислотой, растворами каустической соды, гидроокиси аммония и карбоната аммония. Однако эти способы имеют низкий выход оксида цинка и обычно не восстанавливают чистый оксид цинка, при этом восстановленный оксид цинка загрязнен солями других металлов. Поэтому для получения чистого оксида цинка требовались последующие процессы обжига и выпаривания.
В патенте США N 3.849.121 Барроуза, правопреемником и продолжением которого является настоящее изобретение, описан способ селективного восстановления оксида цинка из промышленных отходов. Способ Барроуза включает выщелачивание отходов раствором хлорида аммония при повышенной температуре, выделение железа из раствора, обработку раствора металлическим цинком и охлаждение раствора для осаждения оксида цинка. В патенте Барроуза описан способ отбора металлической пыли, которая в основном содержит оксиды железа и цинка, и в несколько этапов отделения оксидов железа и металлических отходов.

Однако материал, полученный на последнем этапе, является смесью небольшого количества оксида цинка, гидратных фаз цинка, которые включают гидраты оксида цинка и гидроокись цинка, а также и другие фазы, и большое количество диаминодихлорида цинка Zn(NH3)2Cl2 или других подобных соединений, содержащих ионы цинка и хлора. В настоящее время способ Барроуза является экономически нежизнеспособным из-за инструкций Агентства по защите окружающей среды, установленных после введения в действие патента Барроуза. Кроме того, способ Барроуза не является непрерывным способом и как следовательно современный процесс неэкономичен.

Следовательно, существует необходимость в способе, который должен извлекать оксид цинка из промышленных отходов и в результате осуществления которого получают продукт, большую часть которого составляет оксид цинка, а не смеси оксида цинка и других цинковых фаз. Описанный ниже способ относится к получению чистого оксида цинка. Кроме того, поскольку желательным продуктом является оксид цинка, а диаминодихлорид цинка является нежелательным продуктом, описанный здесь способ демонстрирует, как увеличить образование оксида цинка и уменьшить образование диаминодихлорида цинка.

Пыль отходов металлургических процессов обычно имеет различные количества свинца, кадмия и других металлов, содержащихся в пыли. По различным причинам желательно извлекать эти металлы из пыли металлических отходов, например, для возврата свинца и кадмия и/или предотвращения внесения свинца и кадмия в атмосферу. Патент Барроуза включает способ извлечения растворенных свинца и кадмия из растворов хлорида аммония, которые используются для обработки пыли металлических отходов. В способе Барроуза измельченную в порошок цинковую пыль добавляют в растворы хлорида аммония и в результате электрохимической реакции свинец в элементарной форме осаждается на поверхности порошкообразной цинковой пыли. Для осуществления этой реакции требуется огромная площадь поверхности цинка, поскольку свинец покрывает частицы цинковой пыли и последние становятся непригодными более для электрохимической реакции. Для этой реакции используют очень мелкий порошок. По этой причине, как описано в способе Барроуза, основным недостатком является то, что при добавлении к растворам порошка цинковой пыли, последняя сразу же агломерируется в большие комки или глыбы, которые оседают на дно сосуда. Быстрое перемешивание не предотвращает это явление. Вследствие агрегирования цинка необходимо добавлять большое количество цинка для извлечения всего свинца, что является плохой технологией по экономическим соображениям. Кроме того, если необходимо отделить свинец и некоторое количество кадмия от цинка так, чтобы все эти металлы могли быть проданы или повторно использованы, а также если нужна более высокая концентрация цинка в металлах, то необходимо переработать большую массу на единицу массы цинка.

Следовательно, существует необходимость в способе, который позволит извлечение элементарного свинца, кадмия и других металлов из потоков промышленных отходов, который позволит измельченной в порошок цинковой пыли оставаться дисперсной в растворе с тем, чтобы довести до минимума количество цинковой пыли, необходимой для извлечения свинца, кадмия и других металлов.

Уменьшение до минимального требуемого количества цинка увеличивает экономичность процесса, во-первых, за счет уменьшения требуемого количества цинка, во-вторых, за счет уменьшения массы перерабатываемого материала, и в-третьих, за счет обеспечения извлечения пропорционально большего количества свинца и кадмия. Рециклинг цинксодержащих отходов металлургического производства


Случайные файлы

Файл
70742-1.rtf
37839.doc
102108.rtf
20873-1.rtf
112973.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.