Дифференциальные и интегральные функции распределения (123071)

Посмотреть архив целиком

Министерство науки и образования РФ

Казанский государственный архитектурно-строительный университет

Кафедра Теплогазоснабжения и вентиляции










Реферат

по дисциплине «Метрология, стандартизация и сертификация»

на тему:

Дифференциальные и интегральные функции распределения













Казань 2010 г.


Содержание


Введение

Глава 1. Вероятностное описание результатов и погрешностей

Глава 2. Числовые параметры законов распределения. Центр распределения. Моменты распределений

Глава 3. Оценка результата измерения

Глава 4. Характеристики нормального распределения

Заключение

Список использованной литературы



Введение


Измерения – один из важнейших путей познания природы человеком. Они играют огромную роль в современном обществе. Наука, техника и промышленность не могут существовать без них. Каждую секунду в мире производятся многие миллиарды измерительных операций, результаты которых используются для обеспечения надлежащего качества и технического уровня выпускаемой продукции, обеспечения безопасной и безаварийной работы транспорта, для медицинских и экологических диагнозов и других важных целей. Практически нет ни одной сферы деятельности человека, где бы интенсивно не использовались результаты измерений, испытаний и контроля.

Поэтому следует говорить об измерительных технологиях, понимаемых как последовательность действий, направленных на получение измерительной информации требуемого качества.

Другой фактор, подтверждающий важность измерений, – их значимость. Основой любой формы управления, анализа, прогнозирования, планирования контроля или регулирования является достоверная исходная информация, которая может быть получена только путем измерения требуемых физических величин, параметров и показателей. Естественно, что только высокая и гарантированная точность результатов измерений обеспечивает правильность принимаемых решений.

Задача, которая ставится перед метрологом, желающим приблизиться к истинному значению измеряемой величины и оценить вероятность определенного отклонения в единичном опыте или в серии измерений, состоит в отыскании закона распределения вероятности получения определенного результата от какого-либо аргумента, связанного с отклонением результата от истинного значения. Наиболее универсальным способом достижения этой цели является отыскание интегральных и дифференциальных функций распределения вероятности.


Глава 1. Вероятностное описание результатов и погрешностей


Если при повторных измерениях одной и той же физической величины, проведенных с одинаковой тщательностью и в одинаковых условиях получаемые результаты, отличаются друг от друга, то это свидетельствует о наличии случайных погрешностей. Случайные погрешности являются результатом одновременного воздействия на измеряемую величину многих случайных возмущений. Предсказать результат наблюдения или исправить его введением поправки невозможно. Можно лишь с определенной долей уверенности утверждать, что истинное значение измеряемой величины находится в пределах разброса результатов наблюдений от xmin до xmax, где xmin, xmax – соответственно, нижняя и верхняя границы разброса.

Однако остается неясным, какова вероятность появления того или иного значения погрешности, какое из множества лежащих в этой области значений величины принять за результат измерения и какими показателями охарактеризовать случайную погрешность результата. Для ответа на эти вопросы требуется принципиально иной, чем при анализе систематических погрешностей, подход. Подход этот основывается на рассмотрении результатов наблюдений, результатов измерений и случайных погрешностей как случайных величин. Методы теории вероятностей и математической статистики позволяют установить вероятностные (статистические) закономерности появления случайных погрешностей и на основании этих закономерностей дать количественные оценки результата измерения и его случайной погрешности.

Для характеристики свойств случайной величины в теории вероятностей используют понятие закона распределения вероятностей случайной величины. Различают две формы описания закона распределения: интегральную и дифференциальную. В метрологии преимущественно используется дифференциальная форма – закон распределения плотности вероятностей случайной величины.

Рассмотрим формирование дифференциального закона на примере измерений с многократными наблюдениями. Пусть произведено n последовательных наблюдений одной и той же величины x и получена группа наблюдений x1, x2, x,..., xn. Каждое из значений xi содержит ту или иную случайную погрешность. Расположим результаты наблюдений в порядке их возрастания, от xmin до xmax и найдем размах ряда L = xmax xmin. Разделив размах ряда на k равных интервалов Δl = L / k, подсчитаем количество наблюдений nk, попадающих в каждый интервал. Оптимальное число интервалов определяют по формуле Стерджесса k = 1÷3,3 lg n. Изобразим полученные результаты графически, нанеся на ось абсцисс значения физической величины и обозначив границы интервалов, а на ось ординат – относительную частоту попаданий nk / n. Построив на диаграмме прямоугольники, основанием которых является ширина интервалов, а высотой nk / n, получим гистограмму, дающую представление о плотности распределения результатов наблюдений в данном опыте.

На рис. 1 показана полученная в одном из опытов гистограмма, построенная на основании результатов 100 наблюдений, сгруппированных в таблице 1.


Таблица 1


В данном опыте в первый и последующие интервалы попадает соответственно 0,06; 0,12; 0,18; 0,25; 0,17; 0,14 и 0,08 от общего количества наблюдений; при этом, очевидно, что сумма этих чисел равна единице.


Рис. 1. Гистограмма


Если распределение случайной величины х статистически устойчиво, то можно ожидать, что при повторных сериях наблюдений той же величины, в тех же условиях, относительные частоты попаданий в каждый интервал будут близки к первоначальным. Это означает, что построив гистограмму один раз, при последующих сериях наблюдений можно с определенной долей уверенности заранее предсказать распределение результатов наблюдений по интервалам. Приняв общую площадь, ограниченную контуром гистограммы и осью абсцисс, за единицу, S0 =1, относительную частоту попаданий результатов наблюдений в тот или иной интервал можно определить как отношение площади соответствующего прямоугольника шириной Δl к общей площади.

При бесконечном увеличении числа наблюдений n→ ∞ и бесконечном уменьшении ширины интервалов Δl 0, ступенчатая кривая, огибающая гистограмму, перейдет в плавную кривую f (x) (рис. 2), называемую кривой плотности распределения вероятностей случайной величины, а уравнение, описывающее ее, – дифференциальным законом распределения. Кривая плотности распределения вероятностей всегда неотрицательна и подчинена условию нормирования в виде



Рис. 2. Кривая плотности распределения вероятностей


Закон распределения дает полную информацию о свойствах случайной величины и позволяет ответить на поставленные вопросы о результате измерения и его случайной погрешности. Если известен дифференциальный закон распределения f (x), то вероятность Ρ попадания случайной величины х в интервал от x1 до x2 можно записать в следующем виде



Графически эта вероятность выражается отношением площади, лежащей под кривой f (x) в интервале от x1 до x2 к общей площади, ограниченной кривой распределения. Следовательно, рассмотренное выше условие нормирования означает, что вероятность попадания величины х в интервал [− ∞; + ∞] равна единице, т.е. представляет собой достоверное событие. Вероятность этого события называется функцией распределения случайной величины и обозначается F(x). Функцию распределения F(x) иногда называют также интегральной функцией распределения. В терминах интегральной функции распределения имеем


P {x1 x x2} = F (x1)− F (x2),


т.е. вероятность попадания результата наблюдений или случайной погрешности в заданный интервал равна разности значений функции распределения на границах этого интервала.


Рис. 3. Интегральная (а) и дифференциальная (б) функции распределения случайной величины


Интегральной функцией распределения F(x) называют функцию, каждое значение которой для каждого х является вероятностью события, заключающегося в том, что случайная величина xi в i -м опыте принимает значение, меньшее х. График интегральной функции распределения показан на рис. 3, а. Она имеет следующие свойства:

неотрицательная, т.е. F(x) 0;

неубывающая, т.е. f (x2) F(x1), если x2 x1;

диапазон ее изменения: от 0 до 1, т.е. F(−∞) = 0; F(+∞) = 1;

вероятность нахождения случайной величины х в диапазоне от x1 до


x2: P{x1 < x < x2}= F(x2) F(x1).


Запишем функцию распределения через плотность:



Площадь, ограниченная кривой распределения, лежащая левее точки x (х

текущая переменная) (рис. 4), отнесенная к общей площади, есть не что иное, как интегральная функция распределения F(x) = P{xi < x}.






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.