Вакуумная коммутационная аппаратура (122637)

Посмотреть архив целиком

СХЕМОТЕХНИЧЕСКОЕ И ФУНКЦИОНАЛЬНОЕ ПРОЕКТИРОВАНИЕ ВАКУУМНОЙ КОММУТАЦИОННОЙ АППАРАТУРЫ


ВВЕДЕНИЕ

Необходимость всесторонней интенсификации экономики неразрывно связана с ускорением научно-технического прогресса, важнейшими направлениями которого являются создание и освоение принципиально новой техники и технологии, автоматизация и механизация производства. Выполнение этих задач требует, в частности, развития вакуумной техники, оказывающей определяющее влияние на создание и производство изделий электроники и все более широко используемой в других отраслях промышленности.

Разработка новых вакуумных технологий предъявляет к вакуумному оборудованию повышенные требования, разнообразный и меняющийся диапазон значений которых обуславливает необходимость модернизации и разработки новых конструкций его элементной базы, в частности, вакуумной коммутационной аппаратуры (ВКА): клапанов, затворов, натекателей, служащих для периодического сообщения и герметичного перекрытия вакуумных коммуникаций и управления вакуумным режимом. Конструкцией и правильной эксплуатацией ВКА, являющейся неотъемлемой частью вакуумных систем (ВС), в значительной степени определяется надежность работы вакуумного технологического оборудования. (ВТО). Вместе с тем традиционное проектирование, основанное на интуитивно-эмпирическом подходе, исходя из уровня знаний конструктора, не удовлетворяет в полной мере ужесточившимся требованиям к созданию ВКА (например, необходимости минимального воздействия потоков газовыделения и загрязнений на технологическую среду оборудования производства изделий электронной техники, работе при температурах 600 - 800 К, повышению показателей надежности в десятки раз и т.д.), что особенно заметно на примере цельнометаллической ВКА, показатели качества которой, начиная с начала 70-х годов по существу не улучшаются. В связи с этим существующие конструкции громоздки, имеют небольшой ресурс и наработку на отказ. Ситуация осложняется отсутвием единого научно обоснованного подхода к проектированию ВКА, что приводит к неоправданному ее многообразию, низкому качеству конструкций и, как следствие, к отказам и простоям дорогостоящего оборудования при эксплуатации. Кроме того, проявляется тенденция к значительному уменьшению сроков проектирования ВКА, которая наряду с указанными факторами вызывает необходимость автоматизации процесса проектирования.

Одним из выходов из сложившейся ситуации является разработка и применение новых развивающихся методик проектирования, позволяющих генерировать множество различных технических решений и проводить целенаправленный их поиск и выбор, исходя из технического задания (ТЗ), имеющего жесткие и иногда полярные требования.

Изложенное определило цель настоящей работы, которой является создание научно обоснованной методологии схемотехнического и функционального проектирования ВКА, направленной на решение проблем проектирования ВКА, с конкретной реализацией в виде новых конструкций ВКА и программно-информационных средств, предназначенных для анализа, синтеза и моделирования работы ВКА.

Принципиально функциональное и схемотехническое проектирование ВКА, заключающееся в синтезе и анализе ВКА на этапе технического предложения и содержащее оценку свойств ВКА на основе исследования процессов ее функционирования, генерацию и выбор принципиальных технических решений, определяющих структуру ВКА с учетом специфики ее функционирования в составе конкретной ВС, можно представить в виде последовательности: цель проектирования - функция - устройство (элементная структура), которая обуславливает необходимость формального описания структур, функций, свойств, объектов для определения проектных целей в виде изменения структур ВКА и определения связей свойств ВКА для построения этих структур.

Более детально модель процесса проектирования ВКА на начальных стадиях можно представить в виде алгоритма, укрупненная блок-схема которого приведена на рис. 1.

Согласно представленной блок-схемы, ТЗ на разработку ВКА определяется требованиями к ВС, являющейся для ВКА объектом более высокого уровня, а начальным этапом создания ВКА является поиск аналогов. Это объясняется нецелесообразностью разработки новой конструкции ВКА при наличии среди существующих вариантов ВКА конструкции, полностью удовлетворяющей предъявленным требованиям.

В случае отсутствия аналогов необходимо проанализировать ТЗ для выявления заведомо завышенных требований с целью их смягчения. Если данная процедура не приводит к нахождению аналога, то переходят к поиску прототипа - конструкции ВКА, наиболее полно соответствующей требованиям ТЗ. Сравнение параметров выбранной конструкции ВКА с требуемыми (ТЗ) позволяет сформировать потребительские цели проектирования ВКА в виде необходимости изменения соответствующих значений параметров ВКА или ее структурных составляющих.

Цели и критерии позволяют конструктору осуществлять направленный поиск и синтез технических решений ВКА. Исходя из целей, определяют необходимые функции и функциональные модули, их реализующие. Вводя соответствующие отношения среди найденных функциональных модулей, получают возможные структуры ВКА, из которых с помощью критериев выбирают структуру, наиболее отвечающую предъявленным требованиям ТЗ (происходит достижение проектной цели).

Отсутствие среди известных удовлетворительной функциональной структуры или появление новых функций для достижения потребительской цели проектирования ВКА приводит к необходимости синтеза физического принципа действия ВКА, являющегося этапом ее функционального проектирования, появлению новых функциональных модулей и повторению этапов схемотехнического проектирования ВКА для синтеза ее оптимальной элементной структуры.

Анализ приведенного алгоритма проектирования показал, что, помимо отмеченного отсутствия системного описания ВКА, удобного для постановки задач схемотехнического и функционального проектирования, достижение поставленной цели осложнено также отсутствием исследований процесса функционирования ВКА с позиций схемотехнического проектирования; формального описания структур ВКА и процесса их синтеза; формализованных научно обоснованных методов принятия решений при конструировании ВКА, что позволило сформулировать следующие основные задачи, подлежащие решению: - проведение системного анализа ВКА; - разработка системной модели процесса проектирования ВКА; - разработка методики и математических моделей процесса проектирования ВКА на уровне формирования ее структурных схем; - построение и исследование модели функционирования ВКА; - разработка формализованных методов выбора и критериев оптимальности при структурном синтезе ВКА; - разработка комплекса программных средств автоматизации начальных этапов проектирования ВКА; - разработка новых конструкций ВКА на основе использования созданного методического и информационно-программного обеспечений.

На защиту выносятся:

1. Системные модели ВКА и процесса ее функционального и схемотехнического проектирования.

2. Методика и математические модели функционально-схемотехнического проектирования ВКА.

3. Математические модели ВКА на этапах функционального и схемотехнического проектирования.

4. Методика и математическая модель оценки конструкций ВКА и ее структурных составляющих.

5. Результаты исследования математической модели функционирования ВКА и критерии оптимальности конструкций ВКА.

6. Новый класс ВКА переменной структуры и конструкции ВКА.

I. СОВРЕМЕННОЕ СОСТОЯНИЕ РАБОТ ПО СОЗДАНИЮ ВАКУУМНОЙ

КОММУТАЦИОННОЙ АППАРАТУРЫ

I.I. Анализ связей ВКА с оборудованием электронной

техники. Основные требования, предъявляемые к

ВКА.

Вакуум как рабочая среда технологических процессов и научных исследований находит возрастающее применение в различных отраслях промышленности. При этом основным потребителем элементов, средств и систем вакуумной техники является электронная техника, предъявляющая наиболее жесткие, зачастую противоречивые и трудно реализуемые требования к создаваемым ВС.

Используемое в электронной технике вакуумное технологическое и научное оборудование, интервалы рабочих давлений основных типов которого приведены на рис. I.I., по величине рабочего давления можно условно разделить на три группы: 1) установки с рабочим давлением до 5 10 Па; 2) установки с рабочим давлением до 1 10 Па; 3) оборудование с рабочим вакуумом выше 1 10 Па.

Как правило, получение вакуума в оборудовании первой группы достигается применением паромасляных диффузионных насосов с ловушками, позволяющими исключить наличие углеводородных соединений в рабочей среде; герметизация разъемных соединений осуществляется резиновыми прокладками [I - 5]. Подобные установки относятся к непрогреваемым системам, длительность откачки которых определяется, в основном, десорбцией паров воды [6 - 8]. Дополнительными требованиями к установкам данного типа могут служить необходимость получения определенного спектра остаточных газов [9, 10], исключение привносимой дефектности на изделие электронной техники [11 15], высокая (до 1600 К) температура в рабочей камере и повышенные требования к надежности работы из-за значительного экономического ущерба в случае отказа [16 - 18].

Оборудование второй группы [19 - 24] обеспечивает получение более низких парциальных давлений остаточных газов. В данной группе оборудования, в основном, используют безмасляные (турбомолекулярные, магнито- и электро-разрядные насосы) и комбинированные средства откачки [25 - 27]. В качестве уплотнений разъемных соединений применяются металлические прокладки и прокладки, изготовленные из термостойкой резины [28, 29]. Как правило, установки второй группы прогреваются до 400 - 650 К (оборудование для откачки электровакуумных приборов частично до 950 К), имеют достаточно большое время достижения рабочего давления (от 5 до 20 часов) [19, 30 - 33] и более жесткие требования к привносимой на изделие дефектности [34].


Случайные файлы

Файл
16719.rtf
26260.rtf
180417.rtf
73754-1.rtf
132671.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.