Теорія подібностей (122549)

Посмотреть архив целиком

Теорія подібностей

Реферат з курсу «Експериментальні методи в механіці деформованого твердого тіла»

Виконав студент групи МД-2000-1 Куров Євген Валерійович

Дніпропетровський національний університет, Механіко-математичний факультет

Дніпропетровськ 2004

Историческое введение.

Около ста пятидесяти лет назад возникла новая область научного знания – учение о подобии явлений.

Гениальное предвидение этой науки было высказано Ньютоном в 1686 г. Но только в 1848 г. Член французской академии наук Жозеф Бертран впервые установил основное свойство подобных явлений, сформулировав первую теорему подобия, теорему о существовании инвариантов подобия.

Подобными называются явления, происходящие в геометрически подобных системах, если у них во всех сходственных точках отношения одноимённых величин есть постоянные числа. Эти отношения, так называемые константы подобия, не могут быть выбираемы произвольно, так как величины, характеризующие явление, вообще говоря, не независимы друг от друга, а находятся в определённой связи, обусловленной законами природы. Во многих случаях эта связь может быть выражена в виде уравнения. Для подобных между собой явлений оно должно иметь одинаковый вид. Наличие такого «уравнения связи» между физическими величинами, характеризующими явление, налагает определённое ограничение на выбор констант подобия.

Эти отношения, так называемые константы подобия, не могут быть выбираемы произвольно, так как величины, характеризующие явления, вообще говоря, не независимы друг от друга, а находятся в определенной связи, обусловленной законами природы. Во многих случаях эта связь может быть выражена математически в виде уравнения. Для подобных между собой явлений оно должно иметь одинаковый вид. Наличие такого «уравнения связи» между физическими величинами, характеризующими явление, налагает определенное ограничение на выбор констант подобия.

Бертран вывел первую теорему подобия для случая подобия механических явлений.

Исходя из существования математической связи между силой, массой и ускорением, устанавливаемой вторым законом Ньютона, Бертран показал, что у подобных явлений комплекс величин: «сила*длина/масса*скорость в квадрате» имеет одно и то же значение в сходственных точках подобных явлений. Этот комплекс называется инвариантом, или критерием механического подобия. В природе существуют только те подобные явления, у которых критерии одинаковы.

Если бы физическое уравнение связи можно было бы преобразить так, чтобы оно было составлено из инвариантов подобия, то это было бы общее уравнение, численно одинаковое для всех подобных явлений.

Вторая история подобия устанавливает возможность такого преобразования физических уравнений.

Она была выведена русским ученым А. Федерманом в 1911 г. и несколькими годами позже, в 1914 г., американским ученым Букингэмом.

В 1925 г. Т.А. Афанасьева-Эренфест вывела обе теоремы для случая подобия любых явлений природы и показала, что критериальное уравнение содержит, кроме критериев-комплексов, составленных из переменных величин, еще критерии краевых величин и симплексы – отношения одноименных величин (например, отношения двух скоростей, характеризующих явление). Тем самым учение о свойствах подобных явлений в основном было завершено.

Тотчас после вывода первой теоремы она начала находить практическое применение для обработки опытных данях в критериях подобия. Осборн Рейнольдс выразил закон движения жидкости по трубам одной общей формулой, через критерий подобия, названой в последствии его именем. Оказалось возможным объединить таким путем все численные данные опытов по гидравлическому сопротивлению, проведенных различными исследователями на воде, воздухе, паре, различных маслах и т.д. Фруд, изучая мореходные качества судов на моделях, представил результаты опытов над ними в виде критериального уравнения, которое можно было распространить на суда, подобные по своей геометрической конфигурации испытанным моделям. Наш выдающийся ученый Н.Е. Жуковский положил теорию подобия в основу критериальной обработки опытов над моделями самолетов, продуваемых в аэродинамической трубе, для того, чтобы результаты опытов можно было перевести на подобные моделям самолеты.

Вторая теорема узаконила эту практику.

Критерии подобия выводятся из уравнения связи. Поэтому для получения критериального уравнения надо знать уравнение, связывающее между собой величины, характеризующие рассматриваемое явление.

Для большинства физических явлений уравнения связи найдены в форме дифференциальных уравнений, однако получить интегральные решения их удается только для отдельных частных случаев. Поэтому критерии подобия, как правило, выводятся из дифференциальных уравнений связи, и требовалось еще подтвердить, что критерии, выведенные из проинтегрированных уравнений, остаются те же. Это было сделано П.К.Конаковым.

Таким образом, оказалось возможным результаты опытом над явлениями выражать в критериях подобия, полученных из дифференциальных уравнений, аналитическое решение которых не удалось найти.

Для того чтобы иметь право переносить данные опытов, произведенных на одном объекте, на другие, ему подобные, в выводах теории подобия не хватало еще одного важного звена.

Первая и вторая теоремы были выведены на основе предположения, что речь идет о явлениях, подобие которых заранее известно. Обе теоремы устанавливают свойства подобных явлений, но они не указывают способа для определения того, подобны ли два каких-нибудь, сравниваемых между собой, явления. Возникает вопрос, по каким признакам можно узнать, что явления подобны друг другу.

Ответ дается третьей теоремой подобия.

Третья теорема устанавливает условия, необходимые и достаточные для того, чтобы явления оказались подобными друг другу. Формулировка ее была дана М.В. Кирпичевым и А.А. Гухманом, а доказательство теоремы – М.В.Кирпичевым в 1930 г. (8).

Единичное явление выделяется из группы явлений, подчиняющихся одному и тому же уравнению связи, присоединением к нему условий однозначности, или моновалентности. В подобных явлениях входящие в условия однозначности величины, моноваленты, очевидно, должны быть подобны. Далее, согласно первой теореме, реально существующие подобные явления должны иметь одинаковые критерии, в том числе и составленные моновалентов.

Третья теорема доказывает, что два эти признака достаточны для того, чтобы иметь право считать явления подобными.

Сделанный исторический отбор показывает, что учение о подобии, состоящее первоначально в изучении свойств подобных явлений, постепенно сделалось учением о методах обработки физических опытов. Экспериментатор ставит перед собой следующие вопросы: какие величины надо измерять в опыте, как следует обрабатывать результаты опыта и на какие явления их можно распространять.

Теория подобия дает ответ на все три вопроса.

Измерить надо все величины, которые входят в состав критериев подобия.

Обрабатывать результаты опыта надо в виде зависимости между критериями подобия для того, чтобы можно было распространить их на все подобные явления.

Подобие же их можно узнать по подобию моновалентов и одинаковости моновалентных критериев.

Применение теории подобия к эксперименту развивалось в двух направлениях.

С одной стороны, теория подобия проникла в физику и стала научной основой физического эксперимента. С другой стороны, она нашла приложение в технике, открыв возможность изучать различные технические устройства на моделях.

Между обоими направлениями нельзя провести резкую границу, так как эксперимент в физике часто ставится над процессами, протекающими в различных частях технических устройств, модели же могут охватывать также не только целые технические объекты, но и отдельные части их. Таким образом, теория подобия сделалась научной основой одновременно как физического, так и технического эксперимента.

Осуществить все условия подобия, налагаемые третьей теоремой, часто бывает очень трудно.

Поэтому развитию моделирования весьма способствовал разработанный в СССР метод не точного, а приближенного моделирования, когда соблюдаются не все условия подобия и в модели получается с достаточной для практики точностью приближенное подобие.

Экспериментальная проверка приближенного метода моделирования проведена была в широких пределах М.А.Михеевым и рядом других советских ученых.

Иногда исследователю приходится встречаться с явлениями, настолько сложными и неизученными, что их не удается выразить посредством математических формул и составить уравнение связи между физическими величинами. Для случаев, когда оказывается возможным установить те физические величины, которые должны были бы войти в уравнение связи, Ж.Бертран в 1878 г. предложил метод, позволяющий из соображений о размеренности отдельных членов физического уравнения отгадать вид критериев подобия и подобрать эмпирическое уравнение связи для них. Этот путь менее надежен, и его следует применять только при невозможности вывести уравнения связи.

Так как учение о размерности лежат в основе физических уравнений, то с него мы и начнем изложение учения о подобии.

Математическое и физическое подобие.

Всякое явление природы представляет собой систему материальных тел, которая претерпевает определенное изменение состояния, поскольку в ней протекают различные процессы.

Явлениями, подобными друг другу, называются системы тел, геометрически подобные друг другу, в которых протекают процессы одинаковой природы и в которых одноименные величины, характеризующие явления, относятся между собой как постоянные числа.


Случайные файлы

Файл
27387-1.rtf
144987.rtf
72690-1.rtf
94358.rtf
104949.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.