Шпоры (Шпоры Alex.BiT)

Посмотреть архив целиком

Полупроводниковый лазер, полупроводниковый квантовый генератор, лазер с полупроводниковым кристаллом в качестве рабочего вещества. В Полупроводниковый лазер, в отличие от лазеров др. типов, используются излучательные квантовые переходы не между изолированными уровнями энергии атомов, молекул и ионов, а между разрешенными энергетическими зонами кристалла (см. Твёрдое тело). В Полупроводниковый лазер возбуждаются и излучают (коллективно) атомы, слагающие кристаллическую решётку. Это отличие определяет важную особенность Полупроводниковый лазер — малые размеры и компактность (объём кристалла ~10-6—10-2см3). В Полупроводниковый лазер удаётся получить показатель оптич. усиления до 104 см-1 (см. Усиления оптического показатель), хотя обычно для возбуждения генерации лазера достаточны и меньшие значения (см. ниже). Другими практически важными особенностями Полупроводниковый лазер являются: высокая эффективность преобразования электрической энергии в энергию когерентного излучения (до 30—50%); малая инерционность, обусловливающая широкую полосу частот прямой модуляции (более 109 Ггц); простота конструкции; возможность перестройки длины волны l излучения и наличие большого числа полупроводников, непрерывно перекрывающих интервал длин волн от 0,32 до 32 мкм.

  Люминесценция в полупроводниках. При рекомбинации электронов проводимости и дырок в полупроводниках освобождается энергия, которая может испускаться в виде квантов излучения (люминесценция) или передаваться колебаниями кристаллической решётки, т. е. переходить в тепло. Доля излучательных актов рекомбинации у таких полупроводников, как Ge и Si, очень мала, однако в некоторых полупроводниках (например, GaAs, CdS) при очистке и легировании она может приближаться к 100%.

  Для наблюдения люминесценции необходимо применить какой-либо способ возбуждения (накачки) кристалла, т. е. способ генерации избыточных электронно-дырочных пар (светом, быстрыми электронами или электрическим полем). При малой скорости образования избыточных электронно-дырочных пар излучательная рекомбинация носит беспорядочный (спонтанный) характер и используется в нелазерных полупроводниковых источниках света (см. Светоизлучающий диод). Чтобы получить генерацию когерентного излучения, т. е. лазерный эффект, необходимо создать особое состояние люминесцирующего кристалла — состояние с инверсией населённостей.

  Рекомбинация электронно-дырочной пары может сопровождаться испусканием кванта излучения, близкого по энергии к ширине запрещенной зоны DE полупроводника (рис. 1, а); при этом длина волны l » hc/DE, где h — Планка постоянная, с — скорость света.

  Инверсия населённостей в полупроводниках. Оптическое квантовое усиление в полупроводнике может наблюдаться в том случае, если зона проводимости вблизи её дна Ec заполнена электронами в большей степени, чем валентная зона вблизи её потолка Eu. Преобладание числа переходов с испусканием квантов над переходами с их поглощением обеспечивается тем, что на верхних уровнях находится больше электронов, чем на нижних, тогда как вероятности вынужденных переходов в обоих направлениях одинаковы. Заполнение зон принято описывать с помощью т. н. квазиуровней Ферми, отделяющих состояния с вероятностью заполнения уровней больше 1/2 от состояний с вероятностью заполнения меньше 1/2. Если  и  — квазиуровни Ферми для электронов и дырок, то условие инверсии населённостей относительно переходов с энергией hn (где n — частота излучения) выражается формулой:

> hn.

  Для поддержания такого состояния необходима высокая скорость накачки, восполняющей убыль электронно-дырочных пар вследствие излучательных переходов. Благодаря этим вынужденным переходам поток излучения нарастает (рис. 1, б), т. е. реализуется оптическое усиление.

  В Полупроводниковый лазер применяют следующие методы накачки: 1) инжекция носителей тока через р—n-переход (см. Электронно-дырочный переход), гетеропереход или контакт металл — полупроводник (инжекционные лазеры); 2) накачка пучком быстрых электронов; 3) оптическая накачка; 4), накачка путём пробоя в электрическом поле. Наибольшее развитие получили Полупроводниковый лазер первых двух типов.

  Инжекционные лазеры. Лазер на р—n-переходе представляет собой полупроводниковый диод, у которого две плоскопараллельные поверхности, перпендикулярные р—n-переходу (рис. 2), образуют оптический резонатор (коэффициент отражения от граней кристалла ~20—40%). Инверсия населённостей достигается при большой плотности прямого тока через диод (порог генерации соответствует току ~1 кА/см2, а при пониженной температуре ~ 102 A/см2, рис. 3). Для получения достаточно интенсивной инжекции применяют сильно легированные полупроводники.

  Инжекционные лазеры на гетеропереходе (появились в 1968) представляют собой, например, двусторонние гетероструктуры (рис. 4). Активный слой (GaAs) заключён между двумя полупроводниковыми гетеропереходами, один из которых (типа р—n) служит для инжекции электронов, а второй (типа р—р) отражает инжектированные электроны, препятствуя их диффузионному растеканию из активного слоя (электронное ограничение). При одинаковом токе накачки в активном слое гетероструктуры достигается большая концентрация электронно-дырочных пар и, следовательно, большее оптическое усиление, чем в Полупроводниковый лазер На р—n-переходах. Другое преимущество гетероструктуры состоит в том, что образованный активным слоем диэлектрический волновод удерживает излучение, распространяющееся вдоль структуры, в пределах активного слоя (оптическое ограничение), благодаря чему оптическое усиление используется наиболее эффективно. Для Полупроводниковый лазер на гетеропереходе необходимая плотность тока при Т = 300 К более чем в 10 раз ниже, чем у Полупроводниковый лазер на р—n-переходе, что позволяет осуществить непрерывный режим генерации при температуре до 350 К.

  Полупроводниковый лазер инжекционного типа (рис. 5) работают в импульсном режиме с выходной мощностью до 100 вт и в непрерывном режиме с мощностью более 10 вт (GaAs) в ближней инфракрасной (ИК) области (l = 850 нм) и около 10 мвт (PbxSn1-xTe) в средней ИК области (l = 10 мкм). Недостаток инжекционных лазеров — слабая направленность излучения, обусловленная малыми размерами излучающей области (большая дифракционная расходимость), и относительно широкий спектр генерации по сравнению с газовыми лазерами.

  Полупроводниковый лазер с электронной накачкой. При бомбардировке полупроводника быстрыми электронами с энергией W ~ 103—106 эв в кристалле рождаются электронно-дырочные пары; количество пар, создаваемое одним электроном, ~W/3DE. Этот способ применим к полупроводникам с любой шириной запрещенной зоны. Выходная мощность Полупроводниковый лазер достигает 106 вт, что объясняется возможностью накачки большого объёма полупроводника (рис. 6). Полупроводниковый лазер с электронной накачкой содержит электронный прожектор, фокусирующую систему и полупроводниковый кристалл в форме оптического резонатора, помещенные в вакуумную колбу (рис. 7). Техническое достоинство Полупроводниковый лазер с электронной накачкой — возможность быстрого перемещения (сканирования) электронного пучка по кристаллу, что даёт дополнительный способ управления излучением. Т. к. заметная часть энергии электронного пучка тратится на разогрев решётки кристалла, то кпд ограничен (~1/3); на каждую электронно-дырочную пару расходуется энергия 3DE, а испускается фотон с энергией ~DE

  Полупроводниковые лазерные материалы. В Полупроводниковый лазер используются главным образом бинарные соединения типа А3В5, А2В6, А4В6 и их смеси — твёрдые растворы (см. табл.). Все они — прямозонные полупроводники, в которых межзонная излучательная рекомбинация может происходить без участия фононов или др. электронов и поэтому имеет наибольшую вероятность среди рекомбинационных процессов. Кроме перечисленных в табл. веществ, имеется ещё некоторое количество перспективных, но мало изученных материалов, пригодных для Полупроводниковый лазер, например др. твёрдые растворы. В твёрдых растворах величина DE зависит от химического состава, благодаря чему можно изготовить Полупроводниковый лазер на любую длину волны от 0,32 до 32 мкм.

  Применение Полупроводниковый лазер: 1) оптическая связь (портативный оптический телефон, многоканальные стационарные линии связи); 2) оптическая локация и специальная автоматика (дальнометрия, высотометрия, автоматическое слежение и т.д.); 3) оптоэлектроника (излучатель в оптроне, логические схемы, адресные устройства, голографические системы памяти, см. Голография), 4) техника специального освещения (скоростная фотография, оптическая накачка др. лазеров и др.); 5) обнаружение загрязнений и примесей в различных средах; 6) лазерное проекционное телевидение (рис. 8).

 

Полупроводниковые лазеры (Э — накачка электронным пучком; О — оптическая накачка; И — инжекционные лазеры; П — накачка пробоем в электрическом поле)




Полупроводник


Длина волны излучения, мкм


Максимальная рабочая температура, К


Способ накачки


ZnS

ZnO

Zn1-xCdxS

ZnSe

CdS

ZnTe

CdS1-xSex

CdSe

CdTe


0,32

0,37

0,32—0,49

0,46

0,49—0,53

0,53

0,49—0,68

0,68—0,69

0,79


77

77

77

77

300

77

77

77

77


Э

Э

Э

Э

Э, О, П

Э

Э, О

Э, О

Э


GaSe

GaAs1-xPx

AlxGa1-xAs

InxGa1-xP

GaAs

lnP

InxGa1-xAs

InP1-xAsx

InAs

InSb


0.59

0,62—0,9

0,62—0,9

0,60—0,91

0,83—0,90

0,90—0,91

0,85—3,1

0,90—3,1

3,1—3,2

5,1—5,3


77

300

300

77

450

77

300

77

77

100


Э, О

Э, О, И

О, И

О, И

Э, О, И, П

О, И, П

О, И

О, И

Э, О, И

Э, О, И


PbS

PbS1-xSx

PbTe

PbSe

PbxSn1-xTe


3,9—4,3

3,9—8,5

6,4—6,5

8,4—8,5

6,4—31,8


100

77

100

100

100


Э, И

О, И

Э, О, И

Э, О, И

Э, О, И


Случайные файлы

Файл
153301.rtf
14289.rtf
16368-1.rtf
149807.doc
~1.DOC




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.