Конспекты лекций (Конс_10)

Посмотреть архив целиком

95




10. ВТОРИЧНЫЕ ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ (ВЭР)


Вторичные энергетические ресурсы – это потенциал основного или промежуточного продукта, отходов, образующихся в технологических агрегатах, но не использованного в них. Этот потенциал может частично или полностью использоваться для теплоснабжения и других целей.

Различают ВЭР избыточного давленияпотенциальная энергия газов и жидкостей, покидающих технологические агрегаты с избыточным давлением, которые необходимо снижать перед их использованием на следующем этапе или выбросом в атмосферу, тепловые – физическое тепло отходящих газов технологических установок, физическое тепло основной и побочной продукции, тепло рабочих тел систем принудительного охлаждения, тепло горячей воды и пара, топливные – горючие газы плавильных печей, горючие газы процессов химической и термохимической переработки сырья, отходы деревопереработки и т.п. При использовании ВЭР экономится топливо на замещаемых установках. ВЭР могут использоваться в виде топлива, для выработки тепла с паром или горячей водой, для выработки электроэнергии.


10.1. Использование тепла уходящих газов.


Целесообразность использования тепла уходящих газов определяется их температурой и количеством. Температура уходящих газов . Здесь температуры горения, продуктов сгорания и технологического процесса; bкоэффициент смесеобразования, зависящий от способа подачи топлива и вида горелочных устройств. b =0.68…0.96. Количество уходящих газов определяется как .

В – расход топлива; zкоэффициент выбивания газов из рабочей зоны; DVв – подсосы воздуха в газоходе.

Различают внутреннее и внешнее использование тепла уходящих газов.

1.Внутреннее (регенеративное) – для нагрева компонентов топлива или исходного сырья. При таком использовании тепла снижается расход топлива на технологический процесс, поэтому это направление использования тепла предпочтительнее.

2.Внешнее технологическое. При этом топливо экономится на технологическом агрегате.

3.Внешнее энергетическое – для выработки пара или горячей воды. Топливо экономится на ТЭЦ или в котельной.

4. Комбинированное.

В качестве утилизаторов тепла применяются котлы-утилизаторы. Котлы-утилизаторы классифицируются по:

  1. температуре газов на входе в котел. Котлы с температурой газов от 400 до 900 0С относятся к низкотемпературным. Котлы с температурой газов от 900 до 1100 0С относятся к котлам высокотемпературной группы. В диапазоне температур от 900 до 1100 0С выбор типа котла зависит от агрегатного состояния технологического уноса. При жидком уносе применяют котлы высокотемпературной группы, при гранулированном уносе – котлы низкотемпературной группы;

  2. способу циркуляции – котлы с естественной и принудительной циркуляцией. Принудительная циркуляция позволяет применить разобщенное размещение элементов котла;

  3. параметрам пара – низкие, средние, высокие;

  4. компоновке.



10.1.1. Особенности котлов низкотемпературной группы


Для этих котлов характерно пропускание большого количества газов на 1 тонну пара – Vпс/D, м3/кг. При температурах 600-650 0С Vпс/D=6…8. При температурах 250 0С Vпс/D=2…2.5. Для котлов с автономным сжиганием топлива Vпс/D=1.2…1.5.

Первым по ходу газов элементом котла является пароперегреватель. Последним по ходу газов элементом является экономайзер. Испарительные пакеты выполняют из двух-трех секций. Размеры секций определяются из условия , где lдлина труб секции, Dпаропроизводительность секции. Температура газов на выходе секции

.- минимальная разность температур газов и воды при температуре воды равной температуре насыщения. Обычно =80…100 0С. - снижение температуры газов при наличии экономайзера. Эта величина мала, поэтому часто котлы-утилизаторы выполняются без экономайзера. Для интенсификации процессов передачи тепла следует увеличивать скорость газов и уменьшать диаметр труб. При поперечном обтекании w=2…3.м/с, d=20…30 мм. При продольном обтекании w=6…8 м/с, d=50…60 мм.


10.1.2. Особенности котлов высокотемпературной группы.


Первым по ходу газов элементом котла является радиационная камера охлаждения, экранированная кипятильными трубами. Газы охлаждаются до температуры 900 0С. Следующим по ходу газов является воздухоподогреватель. Он может быть двухступенчатым, если нужно нагревать воздух выше 300-350 0С. В этом случае в рассечку устанавливается экономайзер.


10.2. Контактные теплообменники

В контактном теплообменнике продукты сгорания топлива непосредственно соприкасаются с холодной водой. Контактные теплообменники устанавливаются только при сжигании природного газа. Контактный теплообменник может входить в состав контактного водоподогревателя, может использоваться как средство утилизации тепла продуктов сгорания. Продукты сгорания можно охладить до температуры в 35-45 0С.

Контактные теплообменники бывают двух типов – с пассивной насадкой (контактные экономайзеры) и с активной насадкой (КТАНы).

В контактном экономайзере насадка обычно выполняется из керамических колец Рашига. У этих колец диаметр равен высоте. Размеры колец 25х25, 35х35, 50х50 мм. Кроме колец Рашига насадка может выполняться из витых пластин, металлических сеток, стержней, проволоки, стружки. Для защиты газохода и дымовой трубы от коррозии установлен каплеуловитель. После него газоход имеет вертикальный участок, в котором осуществляется подсушивание дымовых газов. Вода и дымовые газы движутся в режиме противотока. Разность температур воды на входе и газов на выходе может быть до 3 0С.

Контактный теплообменник с активной насадкой имеет два контура воды. Чистая вода циркулирует в трубах. Снаружи эти трубы омываются водой после их контакта с дымовыми газами. Насадка выполнена в виде трубного пучка и участвует в теплообмене. Насадка может быть одно-, двух- и трехслойной. Соответственно, можно нагревать один, два или три потока воды. Максимальная температура воды в КТАНе составляет 50-55 0С. Разность температур воды и газов в любом сечении не должна быть меньше 8-10 0С.

При работе контактных теплообменников отходящие газы охлаждаются ниже температуры точки росы. Это позволяет использовать теплоту конденсации водяного пара продук


тов сгорания. В результате эксплуатационный КПД доходит до 95-96 %, считая по высшей теплоте сгорания топлива. Величину скрытой теплоты конденсации определяют по формуле

,

где rскрытая теплота конденсации водяных паров в продуктах сгорания 1м3 природного газа; - влагосодержание отходящих газов в расчете на 1 кг сухих продуктов сгорания, кг/кг; - плотность сухих отходящих газов, кг/м3; - объем сухих отходящих газов при полном сгорании 1м3 природного газа, м3/ м3. При =1 =4010 кДж/м3. С увеличением коэффициента избытка воздуха меняется незначительно. Воду в контактном экономайзере можно нагреть до температуры 55-65 0С.

Вода в контактной камере может быть нагрета до определенного предела – температуры мокрого термометра - tм. Вода в контактной камере стекает сверху вниз в виде тонких пленок.

Нагретые дымовые газы движутся вверх и при этом нагревают воду. Предположим, что в сечении ВС вода достигает максимальной температуры tм и затем до сечения АD не меняют температуру. В зоне АВСD газы находятся в ненасыщенном состоянии. Рассмотрим случай, когда отсутствует термодинамическое равновесие между водой и газами (рис.10.1,а). Пленка воды имеет малую толщину, т.о. можно пренебречь изменением температуры по ее толщине. Пленка воды и газы могут находиться как в состоянии термодинамического равновесия, так и в неравновесном состоянии. В зоне ABCD будет наибольшая разность температур и наибольшая разность парциальных давлений водяных паров над пленкой воды и в толще газов . Так как в зоне ABCD температура воды не меняется, то все тепло от газов идет на испарение воды. Т.е., в этой области ABCD устанавливается динамическое равновесие




, (10.1)

aкоэффициент теплоотдачи между водой и газами; bкоэффициент массоотдачи; dм и dг – влагосодержание смеси и газов; rтеплота парообразования. Процесс испарения, при котором все тепло идет на испарение и вместе с парогазовой смесью возвращается в поток газов называется адиабатическим испарением, а tм – температура адиабатического испарения – не что иное, как температура мокрого термометра. Из (10.1) видно, что tм зависит от начальной температуры газов, влагосодержаний смеси газов и пара над пленкой и продуктов сгорания вдали от пленки.

Рассмотрим случай, когда между пленкой воды и газами существует термодинамическое равновесие. В сечении ВС вода достигает максимальной температуры tм и далее не нагревается. Продукты сгорания в сечении AD находятся в ненасыщенной состоянии. Двигаясь вверх они насыщаются парами воды и к сечению ВС достигнут температуры адиабатического насыщения. Будем считать, что стенки камеры адиабатные – потерь тепла в окружающую среду нет. Баланс тепла процесса охлаждения газов

- начальная энтальпия продуктов сгорания с температурой tн на входе;

- тепло влаги, испаренной из массы воды с температурой tм в поток продуктов сгорания в зоне ABCD;

- конечная энтальпия газов с температурой tм.

Таким образом,

+=. (10.2)

Характер процесса охлаждения продуктов сгорания зависит от значения температуры воды в момент соприкосновения с газами. Анализ процесса охлаждения газов удобно провести в i-d диаграмме продуктов сгорания.

а) б)

Рис.10.4. i –d диаграмма

а) Построение i –d диаграммы; б) Режимы охлаждения продуктов сгорания в камере

Точка А на диаграмме соответствует состоянию продуктов сгорания на входе в камеру. При соприкосновении с водой нагретые газы охлаждаются и при этом нагревают воду. Характер процесса охлаждения зависит от температуры воды на выходе из камеры.

Предположим, что температура воды ниже температуры точки росы продуктов сгорания. Процесс охлаждения в данном случае показан кривой 1. Так как парциальное давление водяных паров в массе газов выше парциального давления водяных паров над пленкой воды, то в процессе охлаждения влагосодержание газов будет уменьшаться. Т.е. водяной пар в продуктах сгорания будет конденсироваться. При этом с самого начала процесса охлаждения выделяется скрытая теплота парообразования.

Пусть теперь температура воды на выходе из камеры выше температуры точки росы, но ниже температуры мокрого термометра. Процесс охлаждения показан кривой 2. Парциальное давление водяных паров в газах ниже парциального давления паров на пленкой воды. Поэтому влагосодержание газов увеличивается (отрезок А-К на кривой 2). В точке К температура продуктов сгорания равна температуре точки росы (т.К находится на пересечении линии d=const и f=100 %). На отрезке К-М происходит конденсация водяного пара из продуктов сгорания, причем в воду переходит вся вода, которая испарилась в продукты сгорания на отрезке А-К. Тепло, которое при этом выделяется равно теплу, затраченному на их испарение, поэтому оно не влияет на КПД аппарата и называется оборотным теплом.

Рассмотрим процесс охлаждения в случае, когда температура воды на выходе из камеры равна температуре мокрого термометра. Процесс охлаждения показан кривой 3. На отрезке А-F процесс идет по линии мокрого термометра. Газы охлаждаются и одновременно увлажняются. Двигаясь вверх по камере продукты сгорания охлаждаются и с т.F температура воды становится меньше температуры мокрого термометра, но выше температуры точки росы. На отрезке F-N процесс идет так же, как и на отрезке A-K кривой 2. Т.N соответствует температуре вторичной точки росы.

Лучшим вариантом проведения процесса охлаждения является кривая 1. В этом случае не возникает оборотного тепла. Тепло конденсации сразу идет на нагрев воды. Но так получается, если вода в контактной камере не нагревается выше 57-59 0С. Иначе процесс охлаждение будет протекать по кривой 2 или 3.

Если парциальные давления водяных паров в газах и над пленкой воды равны, то массообмена нет. Количество тепла, которое получает вода равно

(10.3)

- количество тепла, передаваемое от газов к воде за счет конвекции (сухой теплообмен). Если парциальные давления водяных паров над пленкой воды и в газах различны, то могут идти процессы испарения или конденсации. Массообмен можно представить в виде

(10.4)

bкоэффициент массоотдачи. Количество тепла в результате массообмена есть

. (10.5)

Результирующее количество тепла, которое передается от продуктов сгорания к воде есть

. (10.6)

В зависимости от конечной температуры нагрева воды контактную камеру можно разбить на одну, две или три зоны.

1. Конечная температура воды меньше температуры точки росы продуктов сгорания. В контактной камере будет одна зона конденсации. С самого начала контакта воды с газами будет происходить конденсация водяных паров из продуктов сгорания и полностью будет использоваться теплота конденсации. На любом участке конденсационной зоны общее количество тепла, переданного от газов к воде равно

.

Характер сухого и мокрого теплообмена показан на рис.10.5.

2. Конечная температура воды . В этом случаев контактной камере будет создаваться зона испарения и зона конденсации. Зона испарения всегда создается на нижнем участке камеры, где вода имеет максимальную тем