Конспекты лекций (Конс_2)

Посмотреть архив целиком

23




2. РЕГУЛИРОВАНИЕ ТЕПЛОВОЙ НАГРУЗКИ


Тепловая нагрузка в течение отопительного сезона меняется. Поэтому для поддержания требуемого теплового режима тепловую нагрузку необходимо регулировать.

Различают центральное, групповое, местное и индивидуальное регулирование. Центральное регулирование осуществляется на ТЭЦ и котельных. Групповое – на групповых тепловых подстанциях. Местное – на местных тепловых подстанциях. Индивидуальное – непосредственно у абонентов.

Если тепловая нагрузка у всех потребителей примерно одинакова, то можно ограничиться центральным регулированием. В большинстве же случаев тепловая нагрузка неоднородна. В этом случае центральное регулирование ведется по характерной тепловой нагрузке для большинства потребителей. В первую очередь это отопительная нагрузка и совместная нагрузка отопления и ГВС. Во втором случае расход воды в ТС увеличивается незначительно по сравнению с регулированием по отопительной нагрузке или не меняется.

Основное количества тепла в абонентских системах расходуется на нагрев. Поэтому тепловая нагрузка в первую очередь зависит от режима теплопередачи. Теплопередача описывается уравнением теплопередачи

(2.1)

где n - длительность работы системы; Fплощадь поверхности теплообмена; kкоэффициент теплопередачи; Dtсредняя разность температур теплообменивающихся сред. В первом приближении

(2.2)

- температура сетевой воды; tтемпература нагреваемой воды; индексы 1 и 2 относятся ко входу и выходу теплообменника. Из уравнения теплового баланса

найдем и подставим в (2.2).

,

Решая совместно (2.1) и уравнение баланса, получим

.

Т.о., тепловую нагрузку в принципе можно регулировать изменением пяти параметров – k, F, n, , . Изменение и имеют ограничения. Температура сетевой воды не может быть ниже 600С, необходимой для обеспечения температуры воды ГВС и не может быть выше температуры насыщения для данного давления. Расход воды определяется располагаемым перепадом давления на ГТП и МТП. Если один из теплоносителей – пар, то его температуру можно изменять меняя давление (дросселированием).

В водяных системах реально можно менять тепловую нагрузку тремя способами:

  1. изменением температуры сетевой воды – качественное регулирование;

  2. изменением расхода сетевой воды – количественное регулирование;

  3. изменением расхода и температуры воды – качественно-количественное регулирование.

Регулирование путем изменения длительности работы n называется регулированием пропусками. Применяется как местное в дополнение к центральному.

Выбор метода регулирования зависит от гидравлической устойчивости системы. Гидравлическая устойчивость - это способность системы поддерживать заданный гидравлический режим и характеризуется коэффициентом гидравлической устойчивости

Здесь - располагаемый перепад давления у наиболее удаленного потребителя;

- перепад давления, срабатываемый в сети. Если у 0,4 , то применяется качественное регулирование. Если y > 0.4, то применяется качественно-количественное регулирование. Центральное регулирование ориентируется на основной вид нагрузки района. Таковой может быть нагрузка отопления (регулирование по отопительной нагрузке), либо совмещенная нагрузка отопления и ГВС (регулирование по совмещенной нагрузке).

Обозначим через расчетные значения величин при .

Текущие значения этих же величин обозначим через .

Относительные безразмерные величины:

; ; .

Связь между можно представить в виде .


1 – качественное регулирование, m=0.

2 – качественно-количественное регулирование, .

3,4 – количественное регулирование, m>1


Рис.2.1. Закон изменения расхода при различных

видах регулирования тепловой нагрузки


2.1 Тепловые характеристики теплообменных аппаратов


В проектных расчетах теплообменников применяются уравнение теплопередачи

(2.3)

и уравнение теплового баланса

или (2.4)

В уравнении (2.3)

(2.5)

Если , то можно пользоваться среднеарифметической разностью температур. . (2.6)


Для целей расчета регулирования тепловой нагрузки уравнение (2.3) неудобно, т.к. заранее величина Dt неизвестна. Поэтому удобнее пользоваться максимальной разностью температур.

(2.7)

где - максимальная разность температур сред. Пользуясь (2.5), можно получить аналитические выражения для D только для прямотока и противотока. Для более сложных схем этого сделать не удается. Поэтому пользуются приближенным выражением.


Dt=D-adtм - bdtб. (2.8)

Если вычислять Dt по (2.5), то b=0.65 для всех схем, 0.35 < a < 0.65 в зависимости от схемы.

Если вычислять Dt по (2.6), то a=b=0.5.

Тепловая нагрузка, отнесенная к максимальной разности температур, называется удельной теплопроизводительностью.


, или


. (2.9)

Отношение удельной теплопроизводительности к полной теплоемкости называется безразмерной теплопроизводительностью, или коэффициентом эффективности.