Комплект для сдачи зачета по БЖД (Лабники кучкой)

Посмотреть архив целиком

Анализ опасности поражения током в электрических сетях.


Согласно Правилам устройства электроустановок (ПУЭ) прямое прикосновение это электрический контакт людей с токоведущими частями, находящимися под напряжением.

Тяжесть поражения человека электрическим током определяется напряжением прикосновения, т. е. напряжением между двумя проводящими частями или между проводящей частью и землей при одновременном прикосновении к ним человека. (ПУЭ, п.1.7.24)

Опасность прикосновения, оцениваемая током ( Ih ) , проходящим через тело человека, или напряжением прикосновения ( Uh ), зависит от ряда факторов: схемы включения человека в электрическую цепь, напряжения сети, а также сопротивлений изоляции и емкостей фазных проводников относительно земли. В данной работе исследуется включение человека между фазным проводником и землей.

Трехфазные сети напряжением до 1000 В выполняются с изолированной или глухозаземленной нейтралями (рис.1). В сети с глухозаземленной нейтралью – нейтраль источника питания – трансформатора или генератора присоединяется непосредственно к заземляющему устройству.




Рис.1 Трехфазные сети

а) трехпроводная с изолированной нейтралью,

б) четырехпроводная с глухозаземленной нейтралью,

в) пятипроводная с глухозаземленной нейтралью


Трехфазные сети с глухозаземленной нейтралью выполняются в совокупности с нулевыми проводниками и могут быть четырех- и пятипроводными.

Для обозначения проводников, например, в электроустановках зданий используются следующие обозначения:

L1, L2, L3 ­­- фазные проводники,

N – нулевой рабочий проводник,

PE – нулевой защитный проводник,

PEN – нулевой проводник, выполняющий функции рабочего и защитного проводников.

Современная классификация электроустановок, используемые термины и обозначения приведены в Приложении № 1 к данному сборнику лабораторных работ (для работ 2, 3, 4, 15).

В данной работе рассматриваются прямое прикосновение человека к фазным проводникам сетей с изолированной и глухозаземленной нейтралями при условии, что защитные меры от поражения электрическим током отсутствуют.

Опасность прикосновения человека к фазному проводнику сети определяется значением проходящего через него тока Ih.

В сети с изолированной нейтралью при нормальном режиме работы (рис.2) и при равенстве между собой сопротивлений изоляции и емкостей фазных проводников относительно земли ток через человека, касающегося фазного проводника определяется выражением:

(1)

где – ток через человека в комплексной форме, А,

Uф - фазное напряжение, В,

Rh ­ - сопротивление тела человека, Ом,

Z - комплексное сопротивление фазного проводника относительно земли, Ом.

Следует отметить, что в ряде случаев при определении тока через человека необходимо кроме сопротивления тела человека (Rh) учитывать сопротивление основания (Rосн) на котором он стоит. В этих случаях следует подставлять в расчетные формулы вместо Rh сумму сопротивлений Rh+Rосн.

Комплекс полного сопротивления Z, как величину обратную проводимости Y, можно записать в виде

, (2)

где r - сопротивление изоляции проводников, Ом,

C – емкость проводников относительно земли, Ф,

- угловая частота, с-1,

fчастота переменного тока, Гц.






Рис.2 Прикосновение человека к фазному проводнику сети с изолированной нейтралью при нормальном режиме.

(r1, r2, r3 – сопротивления изоляции фазных проводников; C1, C2, C3 – ёмкости фазных проводников относительно земли)



Рис.3 Прикосновение человека к фазному проводнику сети с изолированной нейтралью при аварийном режиме:

а) прикосновение к исправному проводнику,

б) прикосновение к замкнувшемуся проводнику.


При равенстве сопротивлений изоляции и весьма малых значениях емкостей проводников относительно земли, т. е. при r1=r2=r3=r и С123=0, что может иметь место в воздушных линиях небольшой протяженности ток, проходящий через человека, будет определятся как:

(3)

При равенстве емкостей и весьма больших сопротивлениях изоляции фазных проводников относительно земли, т. е. при r1=r2=r3=r, С123=C и r>>xc, что может иметь место в кабельных линиях, ток через человека согласно (1) и (2) определяется из выражения:

(4)

где - емкостное сопротивление, Ом.

В сети с глухозаземленной нейтралью при нормальном режиме работы (рис. 4а) ток, проходящий через человека равен:

(5)

где - сопротивление заземлителя нейтрали, Ом.


Рис.4 Прикосновение человека к фазному проводнику четырех проводной сети с глухозаземленной нейтралью:

а) нормальный режим,

б) аварийный режим.


Согласно требованиям Правил устройства электроустановок (ПУЭ) для сети 380/220 В наибольшее значение составляет 4 Ом, сопротивление же тела человека Rh не опускается ниже нескольких сотен Ом. Следовательно, без большой ошибки в (5) можно пренебречь значением . Из выражений (1) и (5) следует, что прикосновение к фазному проводнику сети с глухозаземленной нейтралью в нормальном режиме работы опаснее, чем прикосновение к проводнику сети с изолированной нейтралью, т.к. человек в этом случае попадает практически под фазное напряжение независимо от значений сопротивления изоляции и емкости проводников относительно земли.

В сети с изолированной нейтралью при аварийном режиме работы, т.е. когда произошло замыкание на землю одного из фазных проводников при условии, что сопротивление в месте замыкания намного меньше сопротивления изоляции, выражение для тока через человека, коснувшегося незамкнувшегося на землю проводника (рис.3а) имеет вид:

(6)

где - линейное напряжение, В,

rзм - сопротивление растеканию тока в месте замыкания проводника на землю, Ом.

Сопротивление изоляции сети, согласно ПУЭ, должно быть не менее 500 кОм. Поэтому rзм << r.

Если считать, что rзм<<Rh, например rзм<100 [Ом] и Rh=1 [кОм], то получим

, (7)

т.е. человек окажется под линейным напряжением сети.

Если человек касается замкнувшего на землю проводника (рис 3,б), то ток через него намного меньше и определяется напряжением:

, (8)

Ток Iз находим без учета сопротивления человека из выражения аналогичного (3):

В сети с глухозаземленной нейтралью при аварийном режиме (рис 4,б) ток через человека определяется напряжением фазных и нулевых проводников.

Определим ток Iз, считая что rзм<< Rh.


, (9)


Тогда напряжение нейтрали и нулевого рабочего проводника


, (10)


Напряжение замкнувшегося на землю фазного проводника 1


. (11)




Рис.5 Векторная диаграмма для сети с глухозаземленной нейтралью при замыкании фазного проводника L1 на землю.




Напряжение на исправных фазных проводниках определим из векторной диаграммы (рис 5). Из треугольника 00'2 найдем:

, поскольку сos1200=-1/2, то

(12)

Рассмотрим два крайних случая, используя формулу (12):

  1. rз=0, тогда U0=Uф и U=U=Uф;

2) r0=0, тогда U0=0 и U=U=Uф

Таким образом при любых соотношениях между r0 и rз напряжения на исправных фазах будет определяться неравенством:

Uф<(U=U)<Uф

Зная напряжения на проводниках сети с глухозаземленной нейтралью можно определить ток через человека. Например, при прикосновении к исправным фазным проводникам.

Защитное заземление

Защитным заземлением называется преднамеренное электрическое соединение с заземляющим устройством открытых проводящих частей электроустановок (например, корпусов электрооборудования), которые могут оказаться под напряжением вследствие замыкания на корпус и по другим причинам (индуктивное влияние со­седних токоведущих частей, вынос потенциала и т.п.) в целях электробезопасности.

Замыкание на корпус - случайный электрический контакт между токоведущими частями и открытыми проводящими частями электроустановки, происходящий в результате повреждения изоляции.

Назначение защитного заземления - устранение опасности пора­жения электрическим током в случае прикосновения к корпусу и дру­гим открытым проводящим частям электроустановки, оказав­шимся под напряжением.

Область применения защитного заземления - трехфазные трехпро­водные сети до 1000 В с изолированной нейтралью и выше 1000 В с любым режимом нейтрали.

Принцип действия защитного заземления - снижение напряжения между корпусом электроустановки, оказавшимся под напряжением, и землей до безопасного значения. Защитное заземление выполняется путем подсоединения корпуса электроустановки к заземляющему устройству, состоящему из искусственного или естественного заземлителей, выполненных из металла или других токопроводящих материалов и имеющим электрический контакт с грун­том.

Поясним это на примере сети до 1000 В с изолированной нейтра­лью. Если корпус электроустановки не заземлен и он оказался в контакте с фазным проводником, то прикосновение человека к такому корпусу равносильно прикосновению к фазному проводнику (рис.1). В этом случае ток, проходящий через человека, будет определяться по формуле (в комплексной форме):


, (1)


где Uф - фазное напряжение сети, В; Rh, - сопротивление тела человека, Ом; z - комплекс полного сопротивления проводника относительно земли, Ом;


(2)


Здесь r и С - сопротивление изоляции и емкость проводников относи­тельно земли соответственно; w - угловая частота, с-1 .


Рис.1. Прикосновение человека к изолированному от земли корпусу при замыкании на него фазного проводника


При малых значениях С уравнение (1) принимает вид:


, (3)


где Ih - ток в действительной форме, проходящий через человека, А.

Напряжение, под которым окажется человек, прикоснувшийся к корпусу (напряжение прикосновения), определяется формулой


Uпр = Ih×Rh.


Если же корпус электроустановки заземлен, то при замыкании на него фазного проводника (рис.2) через заземление пойдет ток Iз, значение которого зависит от r и сопротивления заземления кор­пуса rз и определяется выражением, подобным (3):


(4)

Рис.2. Принципиальная схема защитного заземления в сети с изолированной нейтралью (система IT)



Напряжение корпуса относительно земли в этом случае будет равно

Uкорп = Uз = Iз×rз , (5)

а напряжение прикосновения

Uкорп = Uз×a1×a2,

где a1 - коэффициент напряжения прикосновения, учитывающий форму потенциальной кривой и расстояние до заземлителя; a2 - коэффициент напряжения прикосновения, учитывающий паде­ние напряжения на сопротивлении основания, на котором стоит чело­век.


Ток через человека, касающегося корпуса при самых неблагоприятных условиях (a1 = a2 = 1), будет

(6)

Сопротивление заземляющего устройства выбирается таким, что­бы напряжение прикосновения не превышало допустимых значений. Для электроустановок напряжением до 1000 В с изолированной нейтралью наибольшие допустимые значения rз составляют 10 Ом при суммарной мощности генераторов или трансформаторов, питающих дан­ную сеть не более 100 кВ×А; а в остальных случаях rз не должно превышать 4 Ом.

При двойном замыкании на землю в сети с изолированной нейтралью напряжением до 1000 В, то есть замыкании двух фаз на два корпуса, имеющие раздельные заземлители (рис.3), эти и другие корпуса, присоединенные к указанным заземлителям, окажутся под напряжением относительно земли, равным: в установке 1 - Uз1= Iзrз1, в установке 2 - Uз2 = Iзrз2.

Рис.3. Двухфазное замыкание на корпуса электроустановок, имеющие раздельные заземлители

Сопротивление изоляции и емкости фазных проводников относитель­но земли в данном случае практически не влияют на значение тока замыкания на землю, цепь которого устанавливается через сопротив­ления заземлений rз1 и rз2. При этом Uз1 + Uз2 = Uл (Uл - ли­нейное напряжение сети). При равенстве rз1 и rз2, Uз1=Uз2= 0,5Uл. Наличие таких напряжений на заземленных элементах установок явля­ется опасным для человека, тем более, что замыкание в сетях до 1000 В может существовать длительно.

Если же заземлители, или корпуса электроустановок 1 и 2 соединить провод­ником достаточного сечения или эти заземлители выполнить как од­но целое, то двойное замыкание на заземленные корпуса превратится в ко­роткое замыкание между фазными проводниками, что вызовет быстрое от­ключение установок максимально токовой защитой (предохранители, автоматические выключатели), т.е. обеспечит кратковременность опасного режима.

В сети с глухозаземленной нейтралью (рис.4) при замыкании фазно­го проводника на корпус по цепи, образовавшейся через землю, будет проходить ток

,


где r0 - сопротивление заземления нейтрали, Ом.

При этом фазное напряжение распределится между rз и r0, т.е. Uз= Iзrз; U0= Iзr0; Uз + U0 = Uф.


Рис.4. Защитное заземление в сети с глухозаземленной нейтралью (система ТТ)


Таким образом, напряжение корпуса относительно земли зависит от соотношения сопротивлений r0 и rз. При равенстве r0 и rз на­пряжение на заземленном корпусе будет

Uз = U0 = 0,5×Uф


Это напряжение является опасным для человека, поэтому в сети на­пряжением до 1000 В с глухозаземленной нейтралью и системой TN защитное заземление не применяется. Вместо этого применяется защитное зануление.

В сетях с глухозаземленной нейтралью и корпусами, имеющими отдельное заземление (система TT) обязательным согласно ПУЭ является применение устройств защитного отключения на дифференциальном токе (см. Приложение к сборнику лабораторных работ)



Зануление

Согласно Правилам устройства электроустановок (ПУЭ) защитное зануление (далее зануление) в электроустановках напряжением до 1 кВ это преднамеренные соединения открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, выполняемое в целях электробезопасности.

Рис.4.1. Принципиальная схема зануления


Иными словами, занулением называется преднамеренное электрическое соедине­ние нетоковедущих металлических частей электроустановки, которые могут оказать­ся под напряжением вследствие замыкания фазы на корпус (повреждения изоляции), с зазем­ленной нейтральной точкой обмотки источника тока. Это соединение осуществляется с помощью нулевого защитного проводника (PE-проводника).

Наиболее широкая область применения зануления трехфазные четырехпроводные сети напряже­нием до 1000 В с глухозаземленной нейтралью).

Принципиальная схема зануления показана на рис. 1.

П


IН

ринцип действия зануления превращение замыкания на кор­пус в однофазное короткое замыкание (КЗ) (т.е. КЗ между фазным и нулевым защитным проводниками) с целью вызвать ток короткого замыкания Iк, способный обеспечить срабатывание максимальной токовой защиты и тем самым автоматически отключить поврежденную электроустановку от питающей сети.

В качестве такой защиты используются плавкие предохранители или автоматические выключатели, устанавливаемые в цепи питания электроустановок.

Рис.4.2. Эквивалентная схема замещения сети


На рис.2 представлена эквивалентная схема зануле­ния. На этой схеме: ZТ, Zф, Zн полные сопротивления транс­форматора, фазного и нулевого защитного проводников; ХП внешнее индуктивное сопротивление петли фаза-нуль. С целью упрощения схемы соп­ротивлениями ZТ, Хф, Хн, ХП можно пренебречь. В дальнейшем при рассмотрении теоретической части и примеров расчета принимаем, что фазный и нулевой защитный проводники об­ладают лишь активными сопротивлениями Rф, Rн.

В период с момента возникновения замыкания на корпус и до отключения поврежденной электроустановки все зануленные корпуса оказываются под напряжением относительно земли. Безопасность обеспечивается достаточно быстрым отключением поврежденной элект­роустановки с тем, чтобы при данной длительности воздействия ток через человека и напряжение прикосновения не превысили допусти­мых значений (табл. 1). Кроме того, в указанный период напряже­ние корпуса относительно земли снижается благодаря наличию пов­торного заземления нулевого защитного проводника (НЗП).


Таблица 1

Предельно допустимые значения напряжений прикосновения Uпр и токов Ih при аварийном режиме производственных электроустановок напряжением до 1000В

(ГОСТ 12.1.038-82)

Время действия тока, с

0,01¸

0,08

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

более 1,0

Uпр, В

550

340

160

135

120

105

95

85

75

70

60

20

Ih, мА

650

400

190

160

140

125

105

90

75

65

50

6


Если повторное заземление НЗП (т.е. РЕ-проводника) отсутствует, то при замыкании одного из фазных проводников на корпус второй электроустановки (рис.3) напряжение этого корпуса относительно земли Uз2, B, так же, как и всего участка нулевого защитного проводника за местом замыкания (вправо от точки Б), будет равно падению напряже­ния в нулевом защитном проводнике на участке О-Б.

, (1)

где - ток короткого замыкания, проходящий по петле «фаза-нуль», А;

- фазное напряжение сети, В.

Из формулы (1) видно, что при увеличении сопротивления НЗП напряжение на корпусе возрастает. На практике сечение НЗП выбирается в зависимости от сечения фазного проводника. При сечениях фазного проводника выше 35 мм2, сечение НЗП может выбираться в 2 раза меньше сечения фазного проводника.

Тогда, согласно формуле (1)