Экзаменационные вопросы и билеты по предмету МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ за весенний семестр 2001 года (110224)

Посмотреть архив целиком

36



примерный перечень экзаменационных вопросов математические методы исследования экономики



    1. Векторы. Определение, действия с векторами, свойства.

    2. N-мерное пространство. Определение, свойства. Базис n-мерного пространства, свойства базиса.

    3. Матрицы. Определение, примеры.

    4. Действия с матрицами. Свойства.

    5. Определитель матрицы, обратная матрица.

    6. Вектор-столбец, вектор-строка.

    7. Система линейных уравнений. Определение.

    8. Методы Гаусса и Крамера решения системы линейных уравнений.

    9. Системы линейных неравенств. Определение.

    10. Решение системы двух линейных неравенств с двумя неизвестными.

    11. Задача линейного программирования. Постановка задачи, запись в матричном виде, в виде системы неравенств, в векторном виде.

    12. Транспортная задача. Постановка.

    13. Основной метод решения задачи макетного программирования.

    14. Двойственная задача к задаче линейного программирования. Правила построения, примеры.

    15. Основные результаты двойственных друг другу задач.

    16. Свойства оптимальных решений двойственных задач.

    17. Основные понятия теории игр.

    18. Игра двух лиц с нулевой суммой. Постановка задачи, понятие верхней и нижней цены игры, седловая точка.

    19. Чистые и смешанные стратегии в игре двух лиц с нулевой суммой.

    20. Понятие функции нескольких переменных. Основные определения, график функции двух переменных.

    21. Возрастание (убывание) по отдельной переменной и по направлению функции двух переменных.

    22. Понятие локального и глобального максимума (минимума) функции двух переменных.

    23. Выпуклая (вогнутая) функции двух переменных. Геометрическая иллюстрация для функции одной переменной.

    24. Абсолютные и относительные приращения функции двух переменных по отдельным переменным и по направлению.

    25. Частные производные первого порядка по каждой переменной и по направлению функции двух переменных. Определения, свойства.

    26. Частные производные второго порядка функции двух переменных. Определение, свойства.

    27. Необходимые и достаточные условия экстремума функции двух переменных.

    28. Градиент функции двух переменных. Определение, свойства.

    29. Однородность функции двух переменных степени r.

    30. Задача нелинейного программирования. Постановка.

    31. Понятие выпуклых функций и выпуклых множеств. Задача выпуклого программирования. Постановка. Свойства.

    32. Схема градиентных методов решения задачи выпуклого программирования. Метод наискорейшего спуска.

    33. Функция Лагранжа задачи выпуклого программирования. Множители Лагранжа.

    34. Условия Куна-Таккера.

    35. Задача динамического программирования.

    36. Метод динамического программирования. Принцип оптимальности Боллмана. Область применения динамического программирования.

    37. Задача стохасического программирования в жесткой постановке и по средним.

    38. Задачи экономики.

    39. Постановка задачи принятия решения. Участники задачи принятия решения.

    40. Методы обработки экспертной информации.

    41. Для векторов x = (1, 0, 2, 4, 7), y = (0, 2, 4, 1, 1) указать размерность, построить векторы 2x, 5y, 3x + 2y, вычислить (x, y), (3x, 2y), (2x + y, x + 2y).

    42. Для матриц А = , В = найти А + В, 3А + 4В, В', А·В, В·А, |A|, A-1.

    43. Систему уравнений записать в матричной форме: . Решить.

    44. Решить задачу линейного программирования: . Указать оптимальное решение (x1, x2), максимальное решение целевой функции 20x1 + 30x2. Построить двойственную и найти ее решение. Дать геометрическую иллюстрацию, интерпретацию условий двойственности.

    45. В игре двух лиц с нулевой суммой с матрицей выигрышей Н = указать: ― число стратегий первого игрока; ― вторую стратегию сторого игрока; ― нижнюю цену игры; ― верхнюю цену игры.

    46. Для функции Z = найти: ― значение функции в точке (32, 243); ― частные производные первого и второго порядков по x и по y в точке (32, 243).

    47. Для функции Z = 60xy найти: ― абсолютное и относительное приращения функции при переходе из точки (1, 2): в точку (1, 4), в точку (5, 2), по направлению y = 3x при ∆x = 2.

    48. Обосновать выпуклость множеств, заданных условиями: 1) ; 2) ; 3) ; 4) ; 5) .

    49. Проверить, является ли функция выпуклой (вогнутой): 1) ; 2) ; 3) ; 4) .

    50. Построить график функции в точке: 1) ƒ(x, y) = (x - 1)2 + (y - 3)2 в точке (4, 7); 2) ƒ(x, y) = 20x + 18y в точке (1, 1); 3) ƒ(x, y) = 80xy в точке (3, 1); 4) ƒ(x, y) = 45x½y½ в точке (9, 16).

    51. Построить функцию Лагранжа для задачи при условиях: 3x + 8y 48 x, y ≥ 0.

    52. Решить задачу стохастического программирования в постановке “по срезам”: 5x + 3ymax 4x + 6yb x, y ≥ 0. b принимает значение 18 с вероятностью и значение 45 с вероятностью .







Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ


Билет № 1


    1. Показать результат произведения матрицы размерности m х n на вектор-столбец.

    2. Привести двойственную задачу для следующей задачи линейного программирования:

      Каковы размерности двойственной задачи линейного программирования, если прямая задача имеет размерности: векторы х и р размерности n, вектор в – размерности m, матрица А – размерности m х n?

    3. Понятие глобального максимума функции двух переменных.

    4. Экономический смысл отрицательности частной производной первого порядка по х функции двух переменных.

    5. Описать метод наискорейшего спуска.

    6. Предприятие выпускает два вида продукции, используя один вид сырья. Для производства единицы продукции каждого вида требуется 30 ед. и 20 ед. сырья, соответственно. Цена сырья – 300 руб./ед. Определить стоимость сырья, необходимого для осуществления следующего выпуска продукции .

    7. Для функции f (x,y) = 10x + 15y в точке (15,10) построить градиент и линию уровня, проходящую через эту точку. Решение изобразить геометрически.




Зав. кафедрой

--------------------------------------------------




Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ


Билет № 2


    1. Привести свойства умножения матриц.

    2. Дать понятие двойственности в линейном программировании.

    3. Что такое принцип классификации по количеству стратегий? Привести примеры.

    4. Свойство положительности частной производной первого порядка по х функции двух переменных ().

    5. Что относится к задачам эконометрики?

    6. Для вектора х = (3, 7, 0, 2) построить 3х.

    7. Найти частную производную первого порядка по у функции
      f(x,y) =20xy.




Зав. кафедрой

--------------------------------------------------




Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ


Билет № 3


    1. Дать определение произведения матрицы А на матрицу В.

    2. Сформулировать условие, связанное со строгой положительностью некоторой координаты, например хj*, оптимального решения прямой задачи линейного программирования.

    3. В игре двух лиц с нулевой суммой привести понятие верхней цены игры.

    4. Привести формулу Эйлера для однородных функций.

    5. Дать понятие оценки альтернативы х по критерию.

    6. Найти координаты вершин множества, определенного системой линейных неравенств:

    7. Для функции f (x,у) = -x2 + y в точке (2,9) построить линию уровня, проходящую через точку (2, 9) и градиент в этой точке. Решение изобразить геометрически.




Зав. кафедрой

--------------------------------------------------




Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ


Билет № 4


    1. Привести решение системы линейных уравнений методом Гаусса.

    2. Дать понятие опорного плана в задаче линейного программирования.

    3. Область значений функции нескольких переменных.

    4. Дать понятие безусловного экстремума функции нескольких переменных.

    5. В чем состоит задача принятия решения?

    6. Найти произведение матриц А = и х =

    7. Является ли выпуклым множество, точки которого представляют собой решение неравенства: {(x,y): (x - 4)2 + (y -3)2 25}. (решение может быть геометрическим)




Зав. кафедрой

--------------------------------------------------




Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ


Билет № 5


    1. Дать понятие определителя матрицы А.

    2. Привести постановку задачи о рационе.

    3. Сформулировать цель в транспортной задаче.

    4. Дать понятие стационарной точки функции двух переменных.

    5. Что изучает раздел стохастического программирования?

    6. Даны вектора х = (2, 1, 4, -3, 0), у = (1, -2, 1, 0, 1) найти скалярное произведение векторов х и 2х + у.

    7. Обосновать выпуклость множества, точки которого являются решением неравенства (можно геометрически): {(x,y): xy 1, x, y 0}.




Зав. кафедрой

--------------------------------------------------
















Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ


Билет № 6


    1. Привести геометрический смысл решения системы двух линейных неравенств с двумя неизвестными.

    2. Привести постановку транспортной задачи.

    3. Возрастание функции z = f(x,y) по переменой х.

    4. Свойство отрицательности частной производной первого порядка по х функции двух переменных ().

    5. Функция Лагранжа для задачи выпуклого программирования.

    6. Найти произведение матриц хАу, если х = (1 4), А = у =

    7. Найти частную производную первого порядка по х функции
      f(x,y) = 10 x1/4 y3/4.




Зав. кафедрой

--------------------------------------------------




Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ


Билет № 7


    1. Дать понятие линейной зависимости системы векторов.

    2. Сформулировать свойства допустимых планов двойственных задач линейного программирования.

    3. Что такое принцип классификации по свойствам функций выигрыша (платежных функций)?

    4. Показать связь производной по направлению и частных производных первого порядка функции двух переменных.

    5. Дать описание ИМА.

    6. Для матрицы А = найти транспонированную и указать ее размерность.

    7. Вычислить абсолютное приращение функции f(x,y) = 20xy при переходе из точки М (3,4) в точку (3.5,4).




Зав. кафедрой

--------------------------------------------------




Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ


Билет № 8


    1. Привести свойство матриц, имеющих определитель, не равный нулю.

    2. Привести количественное значение роста выручки при уi* > 0 (уi* - i-я компонента оптимального плана двойственной задачи, прямая задача – задача составления плана производства).

    3. Каковы способы классификации игр?

    4. Частные производные высших порядков функции нескольких переменных.

    5. Привести постановку задачи стохастического программирования "по средним".

    6. В игре двух лиц с нулевой суммой матрица выигрышей Н равна:
      Н = Чему равна нижняя цена игры?

    7. Вычислить абсолютное приращение функции f(x,y) = 20xy при движении по направлению у = 2 х из точки М (1,2), если переменная х увеличивается на единицу.




Зав. кафедрой

--------------------------------------------------




Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ


Билет № 9


    1. Дать определение умножения матрицы на число.

    2. Привести запись двойственных друг другу задач в матричной форме.

    3. Что является предметом теории игр?

    4. Свойство отрицательности частной производной первого порядка по у функции двух переменных ().

    5. Задача динамического программирования.

    6. В игре двух лиц с нулевой суммой матрица выигрышей Н:
      Н = Найти решение игры.

    7. Найти частную производную первого порядка по у функции
      f(x,y) =12xy2 + х + 4х3у - 3.




Зав. кафедрой

--------------------------------------------------




Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ


Билет № 10


    1. Сформулировать основные свойства базиса пространства.

    2. Записать в общем виде задачу линейного программирования на максимум в стандартной форме, если размерность задачи: две переменных, одно ограничение.

    3. Область определения функции нескольких переменных.

    4. Абсолютное приращение функции двух переменных по переменной у.

    5. Сформулировать принцип оптимальности.

    6. Найти определитель матрицы А =

    7. Найти частную производную второго порядка по х функции
      f(x,y) =12xy2 + х + 4х3у - 3.




Зав. кафедрой

--------------------------------------------------




Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ


Билет № 11


    1. Привести пример базиса четырехмерного пространства, состоящего из единичных векторов.

    2. Привести экономический смысл превращения некоторого ограничения двойственной задачи на оптимальном плане в строгое неравенство, считая, что решается задача составления плана производства.

    3. Возрастание функции z = f(x,y) по направлению.

    4. Абсолютное приращение функции двух переменных по переменной х.

    5. Дать геометрическую интерпретацию метода наискорейшего спуска в случае максимизации функции двух переменных.

    6. Найти определитель матрицы

    7. Найти частную производную первого порядка по х функции
      f(x,y) =12xy2 + х + 4х3у - 3 в точке (-1,1).




Зав. кафедрой

--------------------------------------------------




Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ


Билет № 12


    1. Привести обоснование неотрицательности неизвестных.

    2. Привести экономический смысл строгой положительности некоторой переменной, например хj*, если прямая задача – задача составления плана производства.

    3. В игре двух лиц с нулевой суммой дать описание решения игры.

    4. Проверить степень однородности линейной функции вида: f(x,y)=ax+by.

    5. Приведите основные методы обработки экспертной информации.

    6. Предприятие выпускает три вида продукции, используя два вида сырья нормы расхода сырья, т.е. в расчете на единицу выпуска характеризуются матрицей
      Определить затраты каждого вида сырья, необходимые для осуществления выпуска продукции в количествах: 1-го вида – 100 ед., 2-го вида – 50 ед. 3-го вида – 70 ед.

    7. Указать область определения следующей функции: f(x,y) = .




Зав. кафедрой

--------------------------------------------------




Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ


Билет № 13


    1. Дать понятие обратной матрицы.

    2. Каков экономический смысл двойственных переменных, если прямая задача связана с составлением плана производства?

    3. Привести понятие матричной игры.

    4. Абсолютное приращение функции двух переменных.

    5. Понятие седловой точки функции.

    6. Для матриц А = и В = найти 2А + 3В.

    7. Вычислить значение функции f (x1, x2, x3, x4) = 8 x1 x2 + 4 + 10 x1 (x4)2 в точке (1, 2, 4, 3)




Зав. кафедрой

--------------------------------------------------




Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ


Билет № 14


    1. Привести способ вычисления определителя путем разложения его по строке.

    2. Сформулировать экономический смысл строгой положительности некоторой двойственной оценки, например уi* , если прямая задача – задача составления плана производства.

    3. Описать методы решения игры двух лиц с нулевой суммой.

    4. Дать понятие условного экстремума функции нескольких переменных.

    5. Сформулируйте свойство градиента выпуклой функции.

    6. В игре двух лиц с нулевой суммой привести пример чистой стратегии Игрока 2, если матрица выигрышей Н равна
      Н =