Лабораторные работы (отчет к л.р.№1)

Посмотреть архив целиком

Студент: Варламов Дмитрий

Группа: А-13-03











Отчет по лабораторной работе №1:

Предельные теоремы

(Курс:”Математическая статистика”)



Цель работы: статистически пронаблюдать существо основных предельных теорем.


1. Теорема Бернулли.


Если проводится n независимых испытаний случайного события A, вероятность которого P(A) = p, то относительная частота /n появления события A ( число появлений A) при большом n приближенно равна вероятности p:

.

Другими словами, при .


будем писать

при ,

если для любого >0 и для достаточно больших n соотношение

(1)

выполняется с вероятностью, стремящейся к 1 с ростом n; запишем это так:

при .

В этом состоит теорема Бернулли. Заметим, что теорема не утверждает, что соотношение (1) достоверно, однако, если n достаточно велико, то вероятность его выполнения близка к 1 (например, 0.98 или 0.999), что практически достоверно. Если собираемся провести эксперимент, состоящий из этого достаточно большого числа n испытаний, то можем быть уверены, что соотношение (1) будет выполнено.


Пример / Задача. Бросание симметричной монеты.

Вероятность появления герба p=0.5. можно показать (с помощью центральной предельной теоремы), что, например, если n (1.5/)2, то соотношение (1) выполняется с вероятностью 0.997, а если n (1.3/)2, то с вероятностью 0.99; последняя в данном случае нас вполне устраивает как практическая достоверность. Положим = 0.1; тогда соотношение

| / n - 0.5 | < 0.1 (a)

выполняется с вероятностью 0.99 при n170. если =0.03, то соотношение

| / n - 0.5 | < 0.03 (б)

выполняется с вероятностью 0.99 при n 1850. Мы уверены, что, проведя 170 бросаний монеты, получим (а), а, проведя 1850 бросаний, получим (б).









Бросание монеты моделируем генерацией случайной величины , принимающей значения 1 ("герб") и 0 ("цифра") с вероятностями 1/2. Число появлений "герба" в n испытаниях

,

где k- результат k-го испытания.




    1. Закон больших чисел в форме Чебышева

Основное утверждение

Одно из основных утверждений закона больших чисел состоит в том, что значение среднеарифметического случайных величин с равными математическими ожиданиями при большом n (при некоторых широких условиях) оказывается приближенно равным a:

уточним: будем писать

при ,

если для любого >0 и достаточно больших n соотношение

(2)

выполняется с вероятностью, стремящейся к 1 с ростом n; запишем это так:

при n .

это одно из утверждений закона больших чисел. Заметим, что, как и теорема Бернулли, оно не означает, что соотношение (2) достоверно; однако, если n достаточно велико, то вероятность его выполнения близка к 1, например, 0.98 или 0.999, что означает практически достоверно. Приведем полную формулировку одной из теорем закона больших чисел в форме Чебышева,

Теоремы Чебышева. Если - последовательность попарно независимых случайных величин, имеющих конечные дисперсии, ограниченные одной и той же постоянной:

,

то для любого >0

при .

1. Испытание практически достоверного события

Убедимся в выполнении (2) статистически, выполнив задание 1.

Задание 1. Случайные величины распределены равномерно на отрезке [0,1]. Если значение задавать произвольно, а число испытаний выбирать из условия n (9D/2), то (как нетрудно показать) соотношение (2) выполняется с вероятностью P=0.997, а если n (5.4D/2) - то с P=0.98. Последняя нас устраивает, как практическая достоверность.

Положим 1 =0.1 и 2 =0.02, определим два соответствующих значения n1 =75 и n2 =1125, и проверим (2) экспериментально (в нашем случае a=0.5).



Задание 1.1. Проверить (2) экспериментально для экспоненциально распределенных слагаемых с M=1. Принять 1 =0.2 и 2 =0.05. Соответствующие значения n1 = 225 и n2 = 2160.








Задание 2. Проверка невыполнения закона больших чисел на величине, распределенной по закону Коши.

Рассмотрим случайную величину, распределенную по закону Коши с плотностью

(3)

Заметим, что плотность симметрична относительно нуля, однако, 0 не является математическим ожиданием; это распределение не имеет математического ожидания. Напомним, что математическим ожиданием называется , если ; последнее, очевидно, для распределения Коши не выполняется. Для последовательности независимых случайных величин, распределенных по закону Коши (3), закон больших чисел не выполняется. Если бы среднеарифметическое сходилось с ростом n к какой-либо константе, то, в силу симметрии распределения, такой константой мог быть только 0. Однако, 0 не является точкой сходимости. Действительно, можно показать, что при любом >0 и при любом сколь угодно большом n

(4)

с вероятностью arctg . (Поясним сказанное: с помощью характеристических функций легко показать, что распределена по (3), а функция распределения для (3) есть arctg x). Эта вероятность, как видно, не стремится к 0 с ростом n. Например, если = 0.03, то вероятность выполнения (4) равна приближенно P 0.98, т.е. событие (4) практически достоверно, и можно уверенно ожидать его выполнения с одного раза. Если =1, то вероятность (4) равна 0.5, и выполнение его хотя бы раз можно уверенно ожидать, проделав 7 экспериментов (т.к. вероятность невыполнения ни разу равна (0.5)7 = 1/128). И это при любом фиксированном n, например, n = 1000. Проверим это экспериментально.

Учтем, что, если случайная величина X распределена равномерно на отрезке длины , то случайная величина

Y = tg X (5)

имеет плотность (3).

Сгенерируем 7 выборок объемом n=1000 и проверим (4) при =1.


Выборка наблюдений, распределенных по закону Коши.



2. Сжатие распределения с ростом числа слагаемых

Закон больших чисел в форме Чебышева означает, что распределение случайной величины

сжимается с ростом n. Если математические ожидания одинаковы, т.е. Mj=a, то сжатие происходит в окрестности точки a.

Аналитически иллюстрировать сжатие можно, если распределение для легко выписывается. Например, если i распределены нормально N(a, 2), то случайная величина распределена по N(a, 2/n). Построим графики плотностей для n =1, 4, 25, 100 и =1, a =1 (сделаем это в целях освоения пакета).

Статистически убедиться в сжатии можно, наблюдая гистограммы при различных значениях n (например, для n =10, 40, 160, 640). Сгенерируем k раз (например, хотя бы k =20) случайную величину : и построим для этой выборки средних гистограмму Hn. Сравнивая гистограммы для различных n, мы заметим сжатие (сделать самостоятельно). сжатие можно увидеть определением для каждого n по минимального min, максимального max значений и размаха w = max - min .


Графики для нормального распределения с различными параметрами:






Разброс средних.

Разброс средних при различных n.



Усиленный закон больших чисел.


Теорема Бореля (1909 г.) ( первая теорема на эту тему) утверждает, что относительная частота fn появления случайного события с ростом числа n независимых испытаний стремится к истинной вероятности p

(6)

с вероятностью 1. Другими словами, при любом эксперименте с бесконечным числом испытаний имеет место сходимость последовательности fn к p.

Будем говорить, что последовательность случайных величин подчиняется усиленному закону больших чисел, если

при n (7)

с вероятностью 1.

В частном случае, при равных математических ожиданиях, Mi=a, это означает

при n (8)

с вероятностью 1.

Достaточное условие выполнения (7) дает

Теорема Колмогорова. Если последовательность взаимно независимых случайных величин удовлетворяет условию

,

то она подчиняется усиленному закону больших чисел.

Для независимых и одинаково распределенных случайных величин справедлив окончательный результат:

Теорема. Необходимым и достаточным условием для применимости усиленного закона больших чисел к последовательности независимых величин является существование математического ожидания.


Проиллюстрируем (6) на примере бросания симметричной монеты, а (8) - на примере равномерно R[0,1] распределенных случайных величин.




Из последовательности x1 ,..., xN независимых наблюдений построим последовательность f1, ..., fN среднеарифметических, где


Случайные файлы

Файл
96570.rtf
41937.rtf
33076.rtf
115077.rtf
178965.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.