Основные механические характеристики материалов (240-1858)

Посмотреть архив целиком


Основы конструирования приборов


















Реферат по теме

Основные механические характеристики материалов




Студента группы ИУ 3-32

Кондратова Николая










Диаграмма растяжения


Построение диаграммы растяжения-сжатия является основной задачей испытаний на растяжение-сжатие. Для этих испытаний используются цилиндрические образцы; полученные диаграммы являются зависимостью между силой, действующей на образец, и его удлинением. На рис. 1 показана типичная для углеродистой стали диаграмма испытания образца в координатах P, l. Кривая условно может быть разделена на четыре зоны.

Зона ОА носит название зоны упругости. Здесь материал под­чиняется закону Гука и

Р
ис. 1.

Удли­нения l на участке ОА очень малы, и прямая ОА, будучи вы­черченной в масштабе, совпадала бы в пределах ширины линии с осью ординат. Величина силы, для которой остается справедли­вым закон Гука, зависит от размеров образца и физических свойств материала.

Зона АВ называется зоной общей текучести, а. участок АВ диаграммы — площадкой текучести. Здесь происходит существен­ное изменение длины образца без заметного увеличения нагрузки. В большинстве случаев при испытании на растяжение и сжатие площадка АВ не обнаруживается, и диаграмма растяжения образца имеет вид кривых, показанных на рис. 2. Кривая 1 ти­пична для алюминия и отожженной меди, кривая 2 для высоко­качественных легированных сталей.

Зона ВС называется зоной упрочнения. Здесь удлинение образца сопровождается возрастанием нагрузки, но неизмеримо более мед­ленным (в сотни раз), чем на упругом участке. В стадии упрочнения на образце намечается место будущего разрыва и начинает образо­вываться так называемая шейка — местное сужение образца (рис.3). По мере растяжения об­разца утонение шейки прогрессирует. Когда от­носительное уменьшение площади сечения срав­няется с относительным возрастанием напряже­ния, сила Р достигнет максимума (точка С). В дальнейшем удлинение образца происходит с уменьшением силы, хотя среднее напряжение в поперечном сечении шей­ки и возрастает. Удлинение образца носит в этом случае местный характер, и поэтому участок кривой CD называется зоной местной текучести. Точка D соответствует разрушению образца. У многих материалов разрушение происходит без заметного образования шейки.

Если испытуемый образец, не доводя до разрушения, разгру­зить (точка К рис. 4), то в процессе, разгрузки зависимость между силой Р и удлинением l изобразится прямой КL (рис. 4). Опыт показывает, что эта прямая параллельна прямой ОА.

Рис. 2

При разгрузке удлинение полностью не исчезает. Оно уменьшается на величину упругой части удлинения (отрезок LM). Отрезок OL представляет собой остаточное удлинение. Его называют также пластическим удлинением, а соответствующую ему деформацию — пластической деформацией. Таким образом,

ОМ=lупр + lост.

Соответственно

= упр + ост


Если образец был нагружен в пределах участка ОА и затем раз­гружен, то удлинение будет чисто упругим, и lост = 0.

Рис. 3

При повторном нагружении образца диаграмма растяжения при­нимает вид прямой LK и далее — кривой KCD (рис.4), как будто промежуточной разгрузки и не было.

Если взять два одинаковых образца, изготовленных из одного и того же материала, причем один из образцов до испытания нагружению не под­вергается, а другой — был пред­варительно нагружен силами, вызвавшими в образце остаточ­ные деформации.

Рис. 4

Испытывая первый образец, мы получим диаграмму растя­жения OABCD, показанную на рис. 5, а. При испытании вто­рого образца отсчет удлинения будет производиться от ненагруженного состояния, и остаточное удлинение OL уч­тено не будет. В результате по­лучим укороченную диаграмму LKCD (рис. 5, б). Отрезок МК соответствует силе предваритель­ного нагружения. Таким образом, вид диаграммы для одного и того же материала зависит от степени начального нагружения (вытяжки), а само нагружение выступает теперь уже в роли неко­торой предварительной технологической операции. Весьма сущест­венным является то, что отрезок LK (рис. 5,б) оказывается больше отрезка ОА. Следовательно, в результате предварительной вытяжки материал приобретает способность воспринимать без остаточных деформаций большие нагрузки.

Рис. 5

Явление повышения упругих свойств материала в результате предварительного пластического деформирования носит название наклепа, или нагартовки, и широко используется в технике.

Например, для придания упругих свойств листовой меди или ла­туни, ее в холодном состоянии прокатывают на валках. Цепи, тросы, ремни часто подвергают предварительной вытяжке силами, превыша­ющими рабочие, с тем, чтобы избежать остаточных удлинений в даль­нейшем. В некоторых случаях явление наклепа оказывается нежела­тельным, как, например, в процессе штамповки многих тонкостен­ных деталей. В этом случае для того, чтобы избежать разрыва листа, вытяжку производят в несколько ступеней. Перед очередной опера­цией вытяжки деталь подвергается отжигу, в результате которого наклеп снимается.



Основные механические характеристики материала


Для того, чтобы оценить свойства не образца, а материала, перестраивается диаграмма растяжения P = f (l) в коорди­натах и . Для этого уменьшим в F раз ординаты и в l раз абс­циссы, где F и l — соответственно площадь поперечного сечения и рабочая длина образца до нагружения. Так как эти величины по­стоянны, то диаграмма = f () имеет тот же вид, что и диаграмма растяжения, но будет характеризовать уже не свойства образца, а свойства ма­териала.

Наибольшее напряже­ние, до которого матери­ал следует закону Гука, называется пределов про­порциональности (n).

Величина предела пропорциональности за­висит от той степени точности, с которой начальный участок диаграммы можно рассмат­ривать как прямую. Степень отклонения кривой = f () от прямой = Е определяют по величине угла, который составляет касатель­ная к диаграмме с осью . В пределах закона Гука тангенс этого угла определяется величиной 1/E. Обычно считают, что если вели­чина d/d оказалась на 50% больше чем 1/Е, то предел пропор­циональности достигнут.

Упругие свойства материала сохраняются до напряжения, на­зываемого пределом упругости (у) --- наибольшего напряжения, до которого материал не получает остаточных деформаций.

Для того чтобы найти предел упругости, необходимо после каждой дополнительной нагрузки образец разгружать и сле­дить, не образовалась ли остаточная деформация. Так как пластиче­ские деформации в отдельных кристаллах появляются уже в самой ранней стадии нагружения, ясно, что величина предела упругости, как и предела пропорциональности, зависит от требований точно­сти, которые накладываются на производимые замеры. Обычно оста­точную деформацию, соответствующую пределу упругости, прини­мают в пределах ост= (15) 10-5, т. е. 0,001 0,005%. Соответ­ственно этому допуску предел упругости обозначается через 0.001 или 0.005

Следующей характеристикой является предел текучести --- напря­жение, при котором происходит рост деформации без заметного увеличения нагрузки. В тех случаях, когда на диаграмме отсутствует явно выраженная площадка текучести, за предел текучести при­нимается условно величина напряжения, при котором остаточная деформация ост = 0,002 или 0,2% (рис. 6). В неко­торых случаях устанавливается предел ост =0,5%.

Рис. 6

Условный предел текучести обозначает­ся через 0.2 и 0.5 зависимости от приня­той величины допуска .на остаточную де­формацию. Индекс 0,2 обычно в обозначе­ниях предела текучести опускается. Если необходимо отличить предел текучести на растяжение от предела текучести на сжа­тие, то в обозначение вводится соответственно дополни­тельный индекс «р» или «с». Таким образом, для предела текучести получаем обозначения тр и ст.

Предел текучести легко поддается определению и является одной из основных механических характеристик материала.

Отношение максимальной силы, которую способен выдержать образец, к его начальной площади поперечного сечения носит назва­ние предела прочности, или временного сопротивления, и обознача­ется через вр ( сжатие — вс).

вр не есть напряжение, при котором разрушается образец. Если относить растягивающую силу не к на­чальной площади сечения образца, а к наименьшему сечению в дан­ный момент, можно обнаружить, что среднее напряжение в наи­более узком сечении образца перед разрывом существенно больше, чем вр. Таким образом, предел прочности также является услов­ной величиной. В силу удобства и простоты ее определения она прочно вошла в расчетную практику как основная сравнительная характеристика прочностных свойств материала.


Рис. 7

При испытании на растяжение определяется еще одна харак­теристика материала — удлинение при раз­рыве %.

Удлинение при разрыве представляет собой величину средней остаточной деформации, которая образуется к моменту разрыва на определенной стандартной длине образца. Определение %. про­изводится следующим образом.

Перед испытанием на поверхность образца наносится ряд рисок, делящих рабочую часть образца на равные части. После того как образец испытан и разорван, обе его части составляются по месту разрыва (рис. 7). Далее, по имеющимся на поверхности рискам от сечения разрыва вправо и влево откладываются отрезки, имевшие до испытания длину 5d (рис. 7). Таким образом определяется сред­нее удлинение на стандартной длине l0 = 10d. В некоторых слу­чаях за l0 принимается длина, равная 5d.


Случайные файлы

Файл
94099.rtf
reklama.doc
158250.rtf
95952.rtf
97399.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.