Апология Бесконечности (109056)

Посмотреть архив целиком

Апология Бесконечности.

Станишевский Олег Борисович

Исследование бесконечности никогда не закончится. познание бесконечности не есть процесс непрерывного накопления знаний о ней, это, скорее, поэтапный прерывно-исторический процесс. На каждом этапе ее познания раскрываются все новые и новые ее стороны. Бесконечность является фундаментальной гносеологической и онтологической константой. Первым знанием о ней был апейрон Анаксимандра (VI в. до н.э.), означавший бесконечное сущее. Представитель позднего пифагореизма Архит Тарентский (IV в. до н.э.) так доказывал бесконечность мироздания: "Поместившись на самом крае Вселенной ... был бы я в состоянии протянуть свою руку или палку дальше за пределы этого края или нет?" [1, с. 240]. Аристотель, как известно, отрицал актуальную бесконечность. Он и ввел понятия актуальной и потенциальной бесконечности. Правда, логически не совсем ясно – как можно говорить о потенциальной бесконечности при отсутствии бесконечности как таковой, то есть актуальной бесконечности. Затем христианство посчитало, что оно решило проблему бесконечности, придав ее в качестве неотъемлемого атрибута Богу. потом математика в лице дифференциального и интегрального исчисления взяла бесконечность на свое вооружение. Поскольку бесконечность не имела строгого и четкого определения, то в математике начали появляться связанные с ней противоречия. Так, например, бесконечные ряды в математике разделили на сходящиеся и расходящиеся, было также узаконено положение о том, что линии состоят из точек, плоскости – из прямых и т.д. До Георга Кантора ничего принципиально нового в понимании бесконечности не было. Заслугой Кантора как раз и является открытие им бесконечной иерархии алефов (алефы – это бесконечные кардинальные числа, или мощности бесконечных множеств). Им была создана теория бесконечных множеств. Вполне закономерным было то, что в ней начали обнаруживаться противоречия. Наиболее известными из них являются парадоксы Рассела. О парадоксах и противоречиях существует достаточно обширная литература. Их исследованию посвящены, например, работы [2], [3], [4], [5]. Однако противоречия и парадоксы в них не разрешаются, а обсуждаются. Правда, Бурова в [4] справедливо подчеркивает, что прямая не состоит из точек, плоскость не состоит из прямых, а то, что в математике считается, что прямая состоит из точек, является заблуждением. Одним словом, противоречия и парадоксы в теории бесконечных множеств сохраняются и поныне. За не менее чем столетнее существование теории (а точнее – теорий) бесконечных множеств в понимании бесконечности мало что изменилось. Даже появление нестандартного анализа (см. о нем в [6]) не внесло полной ясности в понимание бесконечности. Но несмотря на противоречия, математика не собирается отказываться от "канторовского рая", то есть от теории бесконечных множеств (о бесконечном и проблемах бесконечности в доступном изложении см. книжки: "В поисках бесконечности", "Рассказы о множествах" – автор Н.Я. Виленкин; "Неисчерпаемость бесконечности" – автор Ф.Ю. Зигель; "Игра с бесконечностью" – автор венгерская математик Р. Петер).

В последнее время появились публикации, направленные на ниспровержение теории бесконечных множеств и негативно оценивающие самого Г. Кантора и его учение. Эти антиканторовские выступления не беспочвенны и носят весьма решительный и бескомпромиссный характер. Мы здесь покажем несостоятельность подобной антиканторовской тенденции.

Речь идет о публикациях и выступлениях А.А. Зенкина [7], [8], [9]. Вот как он оценивает свой результат [8, с. 167]: "Таким образом, впервые доказано великое интуитивное провидение (и предостережение!) Аристотеля, Лейбница, Локка, Декарта, Спинозы, Канта, Гаусса, Коши, Кронекера, Эрмита, Пуанкаре, Брауэра, Витгенштейна, Вейля, Лузина и многих других выдающихся математиков и философов о том, что "актуальная бесконечность" является внутренне противоречивым понятием и потому его использование в математике - недопустимо". Учение же Кантора объявляется вредным (там же): «именно теорема II Кантора всегда была и остается сегодня единственным(!) основанием для, поистине, вавилонского столпотворения несчетных ординалов и недостижимых кардиналов современной метаматематики: уберите теорему II Кантора, и весь этот блистательный супертрансфинитный "вавилон" рассыпется единовременно, поскольку самый разговор о существовании бесконечных множеств, различающихся по своей мощности, будет в этом случае выглядеть всего лишь "трансфинитной претензией на пустое глубокомыслие"» и "любопытным патологическим казусом в истории математики, от которого грядущие поколения придут в ужас". подобных мест с негативной оценкой Кантора и его учения в этих статьях весьма достаточно.

На чем основывается такая отрицательная оценка теории бесконечных множеств? Основывается она на невозможности доказать диагональным методом, да и всеми другими методами, существование бесконечных множеств, мощность которых строго больше мощности начального бесконечного множества, или коротко – отношение "2M>M" для бесконечного множества M. Сущность этой невозможности заключается в следующем. По предполагаемому пересчету нового множества 2M строят новый, "диагональный", элемент, который никаким образом не может содержаться в предполагаемом пересчете. Кантор и все его последователи (в их числе и наши известные математики П.С. Александров, А.А. Мальцев) из этого заключают, что новое множество нельзя пересчитать с помощью исходного множества M, которым, например, может быть множество натуральных чисел. Однако вся известная теория бесконечных множеств основывается на аксиоме бесконечности Дедекинда: "множество является бесконечным, если и только если оно имеет собственное подмножество, в которое взаимно однозначно отображается данное множество" [10, Т.1, с. 455]. поэтому, добавляя к любому бесконечному множеству один новый элемент, мы ничего не меняем – мощность данного множества не изменится. Следовательно, диагональный метод не должен заканчиваться обнаружением элемента, не входящего в предполагаемый пересчет множества 2M, а должен быть продолжен включением "диагонального" элемента в предполагаемый пересчет и соответственно получением нового предполагаемого пересчета, который уже будет содержать и этот "диагональный" элемент. Но затем может быть получен следующий "диагональный" элемент и эта процедура может продолжаться бесконечно, что и означает невозможность доказать несчетность множества 2M. Это, в свою очередь, означает не что иное, как невозможность построения канторовской иерархии алефов, из чего Зенкин и заключает о несостоятельности бесконечности и канторовской теории множеств.

Но с таким заключением нельзя согласиться по двум причинам. Во-первых, отрицание бесконечности и канторовской теории множеств есть просто-напросто крайний агностицизм. Если согласиться с такой точкой зрения, то из математики надо будет выбросить многие интереснейшие и важнейшие разделы. Потеряем, если можно так сказать, бесконечно много, а найдем бесконечно мало. Во-вторых, концептуальные противоречия из теории множеств можно устранить [11]. Мы здесь кратко остановимся на устранении только тех противоречий, которые имеют отношение к разбираемому здесь противоречию между принятым в теории множеств определением бесконечного множества и диагональным методом Кантора.

Противоречия теории множеств почему-то принято называть парадоксами. Наверное, с легкой руки Б. Рассела. И еще потому, наверное, что парадоксы относят к чему-то непознанному и скрытому и поэтому их существование в теориях считают естественным. Но, в конце концов, парадоксы и противоречия должны быть разрешены и устранены из теории. Поскольку мы здесь защищаем право бесконечности на ее существование, то и разберем мы здесь только два концептуальных противоречия, имеющих непосредственное отношение к этому вопросу, хотя, конечно, концептуальных противоречий в теории множеств значительно больше. Первое из них является фундаментальным и представляет собой методологический принцип всей теории бесконечных множеств. Это – принцип "часть может быть равна целому". Второе концептуальное противоречие заключается в фактическом отсутствии определения начальной актуальной бесконечности. Рассмотрим эти противоречия по порядку.

На принципе "часть может быть равна целому" как на незыблемом фундаменте покоится аксиома бесконечности Дедекинда, эквивалентная другим определениям бесконечности (например, в книге П.С. Александрова [12, с. 21] аксиома Дедекинда доказывается как теорема). Приведем часть тех противоречий теории множеств, которые порождаются этим принципом. Одним из известных парадоксов является парадокс с расходящимися рядами. Например, знакочередующийся ряд S=1-1+1-1+... в зависимости от группировки его членов может иметь любое значение суммы S от 0,±1,±2,... до ± ∞. И все потому, что при перегруппировке членов ряда количество отрицательных и положительных членов на основании принципа "часть может быть равна целому" может меняться самым произвольным образом. Говорят также, что подмножество четных, или нечетных, чисел натурального ряда эквивалентно всему натуральному ряду. Такой же парадоксальной является и арифметика над трансфинитными числами, в которой действуют другие, чем в конечной арифметике, правила и которые также основываются на принципе "часть может быть равна целому". Например, в трансфинитной арифметике имеют место следующие соотношения: n+ω=ω≠ω+n, 2×ω≠ω+ω=ω×2, ω=n×ω≠ω×n и др. Есть еще правила выполнения арифметических операций над кардинальными числами, отличающиеся и от правил конечной арифметики, и от правил трансфинитной арифметики. Так,


Случайные файлы

Файл
79823.rtf
60133.rtf
184789.doc
185693.rtf
144717.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.