Восстановление эталона циклических сигналов на основе использования хаусдорфовой метрики в фазовом пространстве координат (73104-1)

Посмотреть архив целиком

Восстановление эталона циклических сигналов на основе использования хаусдорфовой метрики в фазовом пространстве координат

Леонид Соломонович Файнзильберг, к.т.н.

Предложена стохастическая модель порождения циклических сигналов. Показано, что эта модель является обобщением моделей периодической и почти периодической функций. Предложен конструктивный метод оценки эталона по реализации циклического сигнала, наблюдаемого в фазовом пространстве координат.

Введение. Повторяющиеся во времени процессы часто протекают в технических и биологических системах. Такие процессы порождают специфические сигналы, которые в научной литературе принято называть циклическими [1] или квазипериодическими [2]. Типичными примерами циклических сигналов являются электрокардиограмма (ЭКГ), реограмма, магнитокардиограмма и многие другие физиологические сигналы, отражающие циклический характер работы системы кровообращения живого организма.

Известно, что существующие компьютерные системы анализа и интерпретации циклических сигналов, в частности, ЭКГ, все еще не обеспечивают требуемую достоверность результатов [3]. Согласно [4], это в первую очередь вызвано ошибками, которые возникают при измерении параметров (диагностических признаков) при обработке реальных сигналов во временной области. Один из альтернативных методов анализа таких сигналов, предложенный в [5] и получивший развитие в целом ряде других работ, в частности, в

[6-8], предполагает отображение и обработку сигнала в фазовом пространстве координат.

В настоящей статье предлагается модель порождения циклических сигналов и на основе этой модели исследуется новый метод восстановление эталона циклического сигнала по искаженной реализации, наблюдаемой в фазовом пространстве.

Постановка задачи. Пусть наблюдаемый сигнал является результатом искажения периодического процесса случайным возмущением , где - некоторая функция. Назовем эталонным циклом - часть ненаблюдаемой функции на любом из ее периодов . Ставится задача оценить эталон по реализации , наблюдаемой на отрезке .

Стохастическая модель порождения циклических сигналов. Прежде чем переходить к решению поставленной задачи, рассмотрим одну из возможных моделей порождения по эталону. Будем считать, что эталон может быть представлен в виде функции, кусочно-заданной на интервале отдельными фрагментами

(1)

полагая, что число таких фрагментов . Применительно к ЭКГ такие фрагменты соответствуют стадиям процесса возбуждения отдельных участков сердца - деполяризации предсердий (волне), возбуждению (комплексу) и реполяризации (волне ) желудочков [1].

Представим наблюдаемый сигнал в виде последовательности искаженных эталонов (1), предполагая, что на каждом -м цикле такой последовательности () отдельные фрагменты эталона независимо один от другого линейно растягиваются (сжимаются) по времени, а сама функция линейно растягивается (сжимается) по амплитуде. Иными словами, предполагается, что процесс порождения -го фрагмента () каждого -го цикла () осуществляется на основе операторного преобразования

, (2)

где - соответственно параметры линейного растяжения (сжатия) по амплитуде и времени, а - сдвиг по времени. Для обеспечения непрерывности порождаемого сигнала предполагается, что Последнее требование всегда можно обеспечить, выполнив предварительную нормировку эталона .

Пусть в пределах каждого -го цикла параметр принимает фиксированное значение

, (3)

где - последовательность реализаций независимых случайных величин, которые с нулевым математическим ожиданием распределены на интервале , ограниченном фиксированным числом .

Предположим также, что параметр принимает фиксированное значение в процессе порождения каждого -го фрагмента -го цикла

, (4)

где - последовательность реализаций независимых случайных величин, которые с нулевым математическим ожиданием распределены на интервалах , ограниченными фиксированными числами .

При таких предположениях продолжительность -го фрагмента -го цикла сигнала связана с продолжительностью соответствующего фрагмента эталона соотношением

.

Следовательно, общая продолжительность -го цикла порождаемого сигнала определяется выражением

,

началу -го цикла соответствует момент времени

,

а началу -го фрагмента -го цикла – момент времени

. (5)

Применим к -му фрагменту эталона операторное преобразование (2), положив параметр сдвига . Тогда из (2) с учетом соотношений (3)- (5) следует, что процесс порождения -го фрагмента на -м цикле можно представить в виде

, (6)

где

. (7)

Предложенная модель, которая описывает неравномерные по времени искажения эталона , более пригодна для описания реальных циклических сигналов, в частности ЭКГ, нежели ее упрощенный вариант

,

полученный в предположении, что фигурирующий в (7) случайный параметр зависит только от номера цикла, но не зависит от номера фрагмента.

Нетрудно показать, что стохастическая модель (6),(7) является прямым обобщением известных моделей строго периодического и почти периодического процессов. Действительно, положив в (7) , модель (6) можно представить в виде соотношения

,

которое описывает почти периодический процесс [9], а при дополнительном условии , сводится к модели строго периодической функции .

Предложенная модель легко может быть обобщена для описания процесса порождения более сложных циклических сигналов, в частности, ЭКГ с изменяющейся морфологией отдельных циклов (экстрасистолами) [10]. Для этого достаточно ввести в рассмотрение не один, а эталонов , и предположить, что каждый -й цикл порождается путем аналогичных искажений одного из этих эталонов, выбираемых случайным образом в соответствии с вероятностями .

Генератор циклических последовательностей. Рассмотрим достаточно простой алгоритм генерации дискретных циклических последовательностей по эталонам. Пусть каждый из эталонов , () представлен конечным числом дискретных значений , зафиксированных с постоянным шагом квантования по времени. Зададим общее число фрагментов каждого эталона и номера точек , которые определяют границы -го и -го фрагмента -го эталона.

При таких исходных данных процедура генерации циклической последовательности сводится к следующим шагам.

Шаг 1. Задаем общее число циклов генерируемой последовательности.

Шаг 2. Определяем число циклов, порождаемых -м эталоном, по формуле , где здесь и далее -операция округления до целого числа .

Шаг 3. Выбираем номер эталона, порождающего -й цикл (), по значению реализации целочисленной случайной величины , распределенной на интервале [1,G] т.е. =.

Шаг 4. Если , то повторяем шаг 3.

Шаг 5. Определяем число точек -го фрагмента -го цикла по формуле

,

где - реализация случайной величины , которая с нулевым математическим ожиданием распределена на интервале .

Шаг 6. По дискретным значениям -го фрагмента -го эталона в узлах любым из методов интерполяции вычисляем значения генерируемой последовательности в точках.

Шаг 7. Модифицируем каждое вычисленное значение на основе мультипликативной процедуры , где - реализация случайной величины , которая с нулевым математическим ожиданием распределена на интервале .

Шаг 8. Если , то возвращаемся к шагу 5.

Шаг 9. Присваиваем .

Шаг 10. Если , то возвращаемся к шагу 3.

Результаты моделирования подтверждают эффективность рассмотренного алгоритма для имитации реальных циклических сигналов (рис. 1).



Рис. 1. ЭКГ- сигнал, порожденный моделью (6): по одному эталону (а); по двум эталонам (б)

Метод оценки эталона по искаженной реализации. Пусть циклический сигнал (6) представлен последовательностью дискретных значений, наблюдаемых в течение циклов. Предположим, что для каждого -го значения имеется оценка производной . Выполнив нормировку

,

сформируем множество точек, принадлежащих траектории наблюдаемого сигнала в двумерном нормированном фазовом пространстве .

Пусть нам известны номера точек , соответствующие началам

каждого -го цикла ( алгоритм определения номеров в данной статье не рассматривается). Тогда множество можно разбить на подмножеств нормированных векторов , концы которых лежат на фазовых траекториях отдельных циклов.

Будем оценивать расстояние между любыми двумя подмножествами и , хаусдорфовой метрикой [11]

, (8)

где - евклидово расстояние между точками и .

Назовем опорным циклом подмножество векторов , которое имеет минимальное суммарное расстояние (8) с остальными подмножествами

, (9)

и будем оценивать эталон (средний цикл) путем усреднения точек различных траекторий, расположенных в окрестности точек опорного цикла.

С этой целью проведем селекцию траекторий, подлежащих усреднению, определив

подмножество тех траекторий, хаусдорфово расстояние которых до опорной меньше заданной величины , т.е. . Для улучшения оценки представим опорный цикл и остальные циклы последовательностью расширенных векторов , которые, помимо нормированных фазовых координат , содержат дополнительную компоненту . Величина вычисляется в каждой -й точке -й траектории по формуле

,


Случайные файлы

Файл
29103-1.rtf
70144.rtf
20254-1.rtf
26271-1.rtf
14075.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.