Лазерная система для измерения статистических характеристик пространственных квазипериодических структур (26193-1)

Посмотреть архив целиком

Лазерная система для измерения статистических

характеристик пространственных квазипериодических структур

Введение


В последние годы наблюдается интенсивное развитие аэрокосмической и ракетной техники, что в свою очередь ставит перед промышленностью задачу создания точных и надежных систем связи, ориентации и обнаружения подвижных объектов в пространстве. В большинстве случаев данные задачи решаются с применением радиолокационных СВЧ систем. Одним из важных звеньев этих систем является генератор СВЧ электромагнитных волн, качество которого обеспечивает надежность и тактико-технические характеристики СВЧ систем в целом.

Производство СВЧ приборов является экономически дорогостоящим и технологически трудоемким из-за использования дорогостоящих и труднообрабатываемых материалов. Наиболее трудоемким процесом является изготовление и контроль качества линий замедления (ЛЗ) к магнетронным и клистронным генераторам.

ЛЗ представляют собой пространственные периодические структуры типа оптических дифракционных решеток, точностью которых определяются радиотехнические параметры СВЧ генератора. При этом задача метрологического контроля геометрических размеров ЛЗ по своей трудоемкости и затратам соизмерима со временем и трудоемкостью ее изготовления.

Традиционные методы контроля геометрических параметров ЛЗ с помощью визуальных оптических приборов являются не произво-дительными и трудоемкими, автоматизация которых сложна и непе-респективна. Поэтому очень важной для метрологического обеспечения производства СВЧ систем становится создание высокопроизводительных методов и средств контроля геометрических размеров ЛЗ, и в первую очередь - статистических размеров элементов ее пространственной переодической структуры. Эта задача является актуальной и диктуется реальными потребностями производства.

Благодаря увеличившемуся прогресу в области вычислительной техники и информатики становится возможным и даже необходимым применение возможностей, открывающихся перед разработчиком. Я имею в виду создание автоматизированных измерительных систем контроля качества. Эти системы используя вычислительную мощь современной техники позволят продуктивно перераспределить трудовые ресурсы и существенно повысить продуктивность труда с одновременным снижением себестои-мости выполняемых работ. Для такой системы не требуется высокая квалификация и не важен опыт работы. Измерительная система берет на себя все рутинные операции измерения и вычисления, а оператор только руководит процесом измерения. В результате такая система оказывается экономически оправданной, так как персонал может быть обучен в течении двух дней - одной недели, в зависимости от способностей.

В данной работе производится проектирование и разработка автоматизированной измерительной системы контроля качества изготовления ЛЗ на базе ПЗС-приемника и с применением ЭВМ. С помощью современной ЭВМ возможно не только обработать информацию и получить статистические характеристики, но и отобразить их на экране монитора в удобной для понимания форме. Будут преставлены: математи-ческая модель измерительной системы, произведены габаритный и энергетический расчеты, функциональная схема системы.



1. Существующие методы и средства геометрического

контроля периодических пространственных структур

Из существующих средств для контроля геометрических размеров пространственных структур наиболее широко в промышленности используются микроскопы, проекторы и фотоэлектрические измерительные оптические приборы (фотоэлектрические микроскопыи лазерные дифрактометры ). Но для геометрического контроля пространственной структуры ЛЗ в настоящее время прромышленно используют лишь микроскопы и проекторы. Существенным недостатком применения этих приборов является значительная трудоемкость всего метрологического процесса, а также необходимость статистической обработки результатов измерения размеров a и b ЛЗ.

Более переспективным для автоматизации геометрического контроля ЛЗ является применение фотоэлектрических измерительных приборов, выполненных на основе лазерных дифрактометров. Однако для автомати-зации геометрического контроля ЛЗ в настоящее время лазерные дифрактометры пока еще мало используются из-за отсутствия их промыш-ленного производства.

1.1. Контроль с помощью микроскопов


Контроль статистических характеристик геометрических размеров a и b квазипериодической структуры ЛЗ в промышленных условиях осуществляют с помощью микроскопов УИМ-21, МИМ-3, МБС-1, МИС-1, МБИ-14.

Применение микроскопов позволяет визуально контролировать не только все размеры элементов квазипериодической структуры ЛЗ, но и качество поверхности, ее шероховатость и структуру, наличие мелких заусенцев и другие дефекты поверхности.

Дефекты обработки материалов контролируют при помощи стерео-скопического микроскопа МБС-1. Этот микроскоп позволяет наблюдать прямое и объемное изображение объекта, как в проходящем, так и в отраженном свете, обеспечивая 3.5х - 88х увеличение.

Универсальные микроскопы УИМ-21 и МИМ-3 позволяют с точностью до 1 мкм выполнять контроль геометрических размеров элементов квази-периодической структуры ЛЗ различных типов. Во всех случаях измерения размеров a и b элементов структуры ЛЗ выполняется визуально оператором-метрологом ОТК, а результаты оформляют в виде таблиц. На основе статистической обработки этих таблиц определяют математические ожидания и дисперсии размеров a и b ЛЗ, по которым выдается заключение о качестве изготовленной ЛЗ.

Однако, методы визуального геометрического контроля размеров структуры ЛЗ с помощью микроскопов обладают рядом существенных недостатков:

  • результаты измерений сильно зависят от уровня подготовки опера-торов, т.е. сказывается влияние субъективного фактора;

  • физиологическая утомляемость операторов значительно снижает точность и достоверность измерений;

  • весь процесс контроля трудоемок, низкая производительность труда, необходимо выполнить большое количество вычислений при статис-тической обработке результатов измерений;

  • длительная и ежедневная работа с микроскопом сильно ухудшает зрение контролеров ОТК;

  • практическая сложность эффективной автоматизации процесса контроля.

Указанные выше недостатки частично устранены в методах контроля ЛЗ с помощью проекторов и эпидиаскопов.


1.2. Контроль с помощью проекторов


С помощью проекторов удобно контролировать граничные линии элементов квазипериодической структуры ЛЗ. Изменяя кратность увели-чения прибора можно просматривсть отдельные участки, либо в целом всю структуру ЛЗ. Максимальное увеличение, серийно выпускаемых отечест-венной промышленностью проекторов, достигает 200 х, что позволяет определить погрешности изготовления элементов квазипериодической структуры ЛЗ порядка 4 мкм.

Для повышения производительности процесса и осуществления комплексного контроля сравнивают спроецированный контур ЛЗ с так называемым белком - чертежом ЛЗ в увеличенном масштабе на экране с координатной сеткой для измерения величины размеров a и b. В условиях серийного производства ЛЗ для улучшения сохраняемости и исключения деформации чертежа взамен белковприменяют их фотошаблоны, выполняемые на стекле.

Для изготовления фотошаблона засвечивают и проявляют фото-пластинку, на которой затем тонким резцом почерчивают профиль ЛЗ в требуемом масштабе. С целью обеспечения высокой точности, эту операцию выполняют на координатно-расточном станке. Из полученного негатива изготавливают печатным способом диапозитивные изображения ЛЗ на стекле.

Контроль ЛЗ с помощью проекторов является более высоко-производительным, чем с помощью микроскопов, а также меньше влияет на зрение контролеров-операторов ОТК. Но ему присущи существенные недостатки, среди которых главным является практическая сложность автоматизации процесса контроля. В процессе контроля возникает также необходимость статистической обработки результатов измерений для определения СКО и размеров a и b.

Поэтому в условиях серийного производства ЛЗ на первый план метрологического обеспечения их контроля выходит проблема создания измерительных систем для контроля статистических характеристик размеров a и b структуры ЛЗ. Они по своему принципу действия являются фотоэлектрическими измерительными приборами и могут быть построены на базе сканирующих фотометрических микроскопов, либо лазерных дифрактометров. Практическое применение этих систем должно обес-печивать:

  • сокращение времени измерения размеров a и b, а также времени на их статистическую обработку;

  • устранение влияния уровня подготовки метрологов на надежность процесса крнтроля:

  • повышение достоверности измерения размеров a и b путем их измерения в нескольких сечениях на высоте h зубьев ЛЗ;

  • снижение уставаемости зрения оператора-метролога ОТК.


1.3. Измерительный автоматBugsдля контроля

периодичности спиралей ламп бегущей волны


В 70-х годах фирмой Bugs (США) был разработан измерительный автомат для контроля периода навивки спиралей ламп бегущей волны (ЛБВ). Использование этого автомата позволило сократить время контроля периодичности навивки спиралей ЛБВ с двух человеко-дней до десяти минут.


Случайные файлы

Файл
71706.rtf
1.doc
23469-1.rtf
123910.rtf
CBRR5624.DOC




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.