Аммиак

Бесчисленное множество химических реакций осуществил человек в лаборатории и промышленности, но небольшое химическое уравнение:

N2+3H2==2NН3

занимает особое место в этом бесконечном ряду.

В 1913 г. впервые был получен в промышленном масштабе аммиак каталитическим синтезом из азота и водорода. Так была решена важнейшая проблема: проблема связывания азота, которую уже давно пытались разрешить многие ученые из разных стран. Ее решение давало возможность получить азот в связанном состоянии, в виде аммиака NН3, который переводился в аммонийные соли, или каталитическим окислением в азотную кислоту и ее соли. А уже из этих продуктов можно было неограниченно получать всевозможные азотсодержащие вещества, которые так необходимы буквально во всех отраслях народного хозяйства.

Примерно в одно и то же время (1775—1780) были проведены первые опыты по связыванию свободного азота атмосферы. В 1775 г. шведский ученый К. Шееле открыл реакцию связывания свободного азота в цианид:

Na2CO3 + 4С + N2 = 2NaCN + ЗСО

На основании этой реакции впоследствии, в 1895 г., был разработан А. Франком и Н. Каро цианамидный метод связывания свободного азота:

СаС2 + N2 = СаСN2 + С

Он получил довольно широкое распространение, но сопровождался затратами больших количеств электроэнергии и поэтому почтя сошел на нет.

Параллельно этому способу связывания свободного азота английскими учеными Д. Пристли и Г. Кавендишем была открыта реакция азота с кислородом при сильных электрических разрядах с образованием оксида азота:

N2 + O2 = 2NO

Этот способ получил название дугового и нашел некоторое распространение с начала XX в. Но уже к 1925 г. его перестали применять из-за чрезвычайной невыгодности: в нем потреблялись колоссальные количества энергии, но основная часть затрачиваемой энергии расходовалась впустую.

Потребности же в азотных соединениях возрастали. Поэтому крайне необходим был такой способ связывания свободного азота, имевшегося в неограниченных количествах в атмосфере, который мог бы удовлетворить потребности человеческого общества в соединениях азота и был бы энергетически выгодным.

Попытки синтеза аммиака из азота и водорода предпринимались многими учеными, начиная с конца XVI И в., после того, как в 1784 г. крупнейший французский ученый К. Бертолле установил его состав (до этого считали, что в состав аммиака входит так же и кислород).

Ф. Габер, автор каталитического синтеза аммиака, так говорил впоследствии о сложившемся положении:

Потребность в новых источниках азота обнаружилась в конце XIX в. С середины XIX в. использовалась чилийская селитра, но к концу века стало ясно, что при дальнейшем возрастании потребностей в сравнении с имеющимися запасами, к середине XX в. запасы будут исчерпаны, если химия не найдет выхода из положения.

Химическая постановка вопроса была не нова. Когда начали перегонять каменный уголь, среди продуктов перегонки натолкнулись на аммиак, который в форме сульфата аммония нашел затем применение в сельском хозяйстве. Если в 1870 г. аммиак был бесполезным побочным продуктом газового производства, то в 1900 г. он становится высокоценным продуктом коксовальной промышленности, и коксовальные печи начинают снабжаться установками для его утилизации. Его получение из каменного угля было изучено и выход повышен, но на этом пути не могло быть полного спасения. При содержании азота в угле, равном 1 %, нельзя было перерабатывать каменный уголь ради одного аммиака.

Было рассчитано, что потребность в связанном азоте, равная в начале XX в. 100 тыс. т в год, скоро поднимется до 1 млн. т. Такой спрос мог быть удовлетворен только из одного источника: из огромного запаса элементарного азота, который представляет наша атмосфера, посредством связывания с другим, широко распространенным химическим элементом. Исходным продуктом, таким образом, является атмосферный азот; конечным продуктом должны быть селитра или аммиак, требуемые в качестве удобрения.

Задача свелась к тому, чтобы связать азот или с кислородом или с водородом”.

Но все эти попытки оставались безуспешными. Синтез аммиака был осуществлен лишь в начале XX в. Для этого имелись причины: во всех предшествующих работах был накоплен опыт в этой области к началу XX в. резко увеличилась потребность в азотистых веществах со стороны почти всех отраслей экономики, а особенно для производства взрывчатых веществ в связи с войнами огромную роль сыграли успехи физической химии. Особенно это относится к учению о химическом равновесии, развитию которого способствовали работы Р. Клаузиуса и А. Вильямсона, Я. Вант-Гоффа и А. Ле-Шателье.

В 1884 г. Я. Вант-Гофф установил зависимость подвижного равновесия от изменения температуры: каждое равновесие между двумя различными состояниями вещества (системами) смещается при понижении температуры в сторону той из двух систем, при образовании которой выделяется теплота. А. Ле-Шателье распространил этот принцип на изменение концентрации веществ, на изменение давления и т. д. В 1888 г. А. Ле-Шателье, изучая влияние давления на химические реакции, сформулировал ставший потом известным принцип. По этому принципу всякая физико-химическая система стремится сохранить состояние равновесия и на все процессы, действующие на нее извне, отвечает такими процессами изнутри системы, которые стремятся уничтожить это внешнее воздействие. Отныне можно было предвидеть направление любого химического процесса.

Таким образом, основываясь на закономерностях, установленных Я. Вант-Гоффом, и в особенности А. Ле-Шателье, можно было правильно определить оптимальные термодинамические условия проведения химического процесса, т. е. при каком давлении и температурах лучше всего проводить тот или иной химический процесс.

Это было очень важным для осуществления многих химических реакций в промышленности, и в первую очередь синтеза аммиака, явившимся первым промышленным процессом, на котором апробировались теоретические положения еще молодой тогда науки — физической химии.

По уравнению реакции:

N2+3H2==2NН3

видно, что она проходит с резким уменьшением объема (в 2 раза). Следовательно, по принципу Ле-Шателье для проведения этого процесса необходимо высокое давление.

Далее, эта реакция экзотермична, следовательно, выход аммиака будет тем больше, чем ниже температура. Отсюда становится ясным, в каком направлении должен был вестись поиск оптимальных условий синтеза аммиака. Ф. Габер так говорил о значении i физической химии и роли А. Ле-Шателье, правда, несколько умаляя роль последнего:

Синтез аммиака из элементов — это процесс, принадлежащий классической физической химии. Мысль об обратимости процесса диссоциации аммиака имели уже Девилль, Рамзай и Юнг. Ле-Шателье уже в 1901 г. исследовал влияние температуры и дав.. положение равновесия. Неудача первых попыток синтеза, однако, побудила его оставить исследование вопроса и относящиеся сюда соображения были им лишь изложены во французском патенте. узнал об этом лишь значительно позже того, как сам пришел к успешному окончанию моей работы.

Значение найденного решения задачи состоит в том, что при нем не приходится вступать в область очень высоких температур и что поэтому расход угля по отношению к выходу аммиака значительно меньше, чем в других способах”.

В начале XX в. и начались усиленные исследования ученых, особенно в Германии, где их проводили известнейшие ученые Вальтер Нернст и Фриц Габер. Они были крупными физико-химиками, термодинамиками (известен третий закон термодинамики Нернста, так называемая “тепловая” теорема). Исследования реакции азота с водородом под давлением были для них не случайны, так как эта реакция давала богатейший материал для изучения термодинамических законов. Кроме того, нельзя забывать, что в начале XX в. Германия готовилась к войне; надо учитывать и потребности развивающегося сельского хозяйства. Поэтому в Германии особенно остро ставилась проблема связывания свободного азота, и она была решена именно в этой стране. Значение же работ ученых других стран, и в частности Франции, также велико, так как без открытий А. Ле-Шателье, например, было бы гораздо труднее решить задачу соединения азота с водородом. Поэтому хотя каталитический синтез аммиака и родился в Германии, но, по сути дела. этот способ связывания азота интернационален. Это очень важно.

Непосредственным же создателем процесса каталитического синтеза аммиака, который потом можно было осуществить в промышленности, стал Фриц Габер. Он проводил исследования сначала в Карлсруэ, а потом в Берлине и посвятил синтезу аммиака значительную часть своей жизни.

Работы Ф. Габера по синтезу аммиака начались в 1904 г. В период 1907—1909гг. он сконструировал специальный маленький контактный аппарат, где применил повышенное давление; был подобран также осмиевый катализатор. Разработанный процесс был рекомендован для промышленного производства аммиака. Произошло это так. Руководители Баденского анилинового и содового завода еще не могли предугадать, что опыты Ф. Габера имели большое промышленное значение. 2 июля 1909 г.Ф. Габер демонстрировал свои опыты по синтезу аммиака представителям этого завода К. Бошу и А. Митташу. Но опыт сначала не удавался, и К. Бош уехал. После полудня опыты были начаты снова, и аммиак был получен. А. Митташ, единственный представитель Баденского анилинового и содового завода, решился приобрести Ф. Габеру право на патентование и рекомендовать этот процесс в производство.


Случайные файлы

Файл
17425-1.rtf
92868.rtf
126094.rtf
14763-1.rtf
91028.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.