Непредельные, или ненасыщенные, углеводороды ряда этилена (алкены, или олефины) (13994-1)

Посмотреть архив целиком

Непредельные, или ненасыщенные, углеводороды ряда этилена (алкены, или олефины)

Алкены, или олефины (от лат. olefiant - масло — старое название, но широко используемое в химической литературе. Поводом к такому названию послужил хлористый этилен, полученный в XVIII столетии, — жидкое маслянист вещество.) — алифатические непредельные углеводороды, в молекулах которых между углеродными атомами имеется одна двойная связь.

Алкены содержат в своей молекуле меньшее число водородных атомов, чем соответствующие им алканы (с тем же числом углеродных атомов), поэтому такие углеводороды называют непредельными или ненасыщенными.

Алкены образуют гомологический ряд с общей формулой CnH2n.

1. Строение алкенов

Простейшим представителем этиленовых углеводородов, его родоначальником является этилен (этен) С2Н4. Строение его молекула можно выразить такими формулами:

H H H H

| | : :

C==C C::C

| | : :

H H H H

По названию первого представителя этого ряда — этилена — такие углеводороды называют этиленовыми.

В этиленовых углеводородах (алкенах) атомы углерода находятся во втором валентном состоянии (2-гибридизапия). Напомним, что в этом случае между углеродными атомами возникает двойная связь, состоящая из одной s- и одной p-связи. Длина и энергия двойной связи равны соответственно 0,134 нм и 610 кДж/моль. Разница в энергиях s- и p-связей (610 - 350 = 260) является приблизительной мерой, характеризующей прочность p-связи. Будучи более слабой, она в первую очередь подвергается разрушительному действию химического реагента.

2. Номенклатура и изомерия

Номенклатура. Алкены простого строения часто называют, заменяя суффикс -ан в алканах на -илен: этан — этилен, пропан — пропилен и т.д.

По систематической номенклатуре названия этиленовых углеводородов производят заменой суффикса -ан в соответствующих алканах на суффикс -ен (алкан — алкен, этан — этен, пропан — пропен и т.д.). Выбор главной цепи и порядок названия тот же, что и для алканов. Однако в состав цепи должна обязательно входить двойная связь. Нумерацию цепи начинают с того конца, к которому ближе расположена эта связь. Например:

СH3

|

H3C—CH2—C—CH==CH2 H3C—C==CH—CH—CH2—CH3

| | |

CH3 CH3 CH3

3,3-диметилпентен-1 2,4-диметилгексен-2

Иногда используют и рациональные названия. В этом случае все алкеновые углеводороды рассматривают как замещенные этилена:

Н3С—СН==СН—CH2—СН3

метилэтилэтилен

Непредельные (алкеновые) радикалы называют тривиальными названиями или по систематической номенклатуре:

Н2С==СН— - винил (этенил)

Н2С==CН—СН2 - аллил (пропенил-2)

Изомерия.

Для алкенов характерны два вида структурной изомерии. Кроме изомерии, связанной со строением углеродного скелета (как у алканов), появляется изомерия, зависящая от положения двойной связи в цепи. Это приводит к увеличению числа изомеров в ряду алкенов.

Первые два члена гомологического ряда алкенов - этилен и пропиле) - изомеров не имеют и их строение можно выразить так:

H2C==CH2 H2C==CH—CH3

этилен пропилен

(этен) (пропен)

Для углеводорода С4H8 возможны три изомера:

CH3

|

H2C==CH—CH2—CH3 H3C—CH==CH—CH3 H2C==C—CH3

бутен-1 бутен-2 2-метилпропен-1

Первые два отличаются между собой положением двойной связи углеродной цепи, а третий — характером цепи (изостроение).

Однако в ряду этиленовых углеводородов помимо структурно изомерии возможен еще один вид изомерии — цис-, транс-изомерия (геометрическая изомерия). Такая изомерия характерна для соединений с двойной связью. Если простая s-связь допускает свободное вращение отдельных звеньев углеродной цепи вокруг своей оси, то вокруг двойной связи такого вращения не происходит. Это и является причиной появления геометрических (цис-, транс-) изомеров.

Геометрическая изомерия — один из видов пространственной изомерии.

Изомеры, у которых одинаковые заместители (при разных углеродных атомах) расположены по одну сторону от двойной связи, называют цис-изомерами, а по разную — транс-изомерами:

H H H CH3

| | | |

C==C C==C

| | | |

H3C CH3 H3C H

цис-бутен-2 транс-бутен-2

Цис- и транс-изомеры отличаются не только пространственным строением, но и многими физическими и химическими свойствами. Транс-изомеры более устойчивы, чем цис-изомеры.

3. Получение алкенов

В природе алкены встречаются редко. Обычно газообразные алкены (этилен, пропилен, бутилены) выделяют из газов нефтепереработки (при крекинге) или попутных газов, а также из газов коксования угля. В промышленности алкены получают дегидрированием алканов в присутствии катализатора (Сr2О3). Например:

® H2C==CH—CH2—CH3

H3C—CH2—CH2—CH3 ® -H2 бутен-1

бутан ® H3C—CH==CH—CH3

бутен-2

Из лабораторных способов получения можно отметить следующие:

1. Отщепление галогеноводорода от галогеналкилов при действии на них спиртового раствора щелочи:

H2C—CH2 ® H2C==CH2 + KCl + H2O

| |

Cl H

K—OH

2. Гидрирование ацетилена в присутствии катализатора (Pd):

H—CººC—H + H2 ® H2C==CH2

3. Дегидратация спиртов (отщепление воды). В качестве катализатора используют кислоты (серную или фосфорную) или А12O3:

Н2С—СН2 ® Н2С==СН2 + Н2О

| |

H OH

этиловый

спирт

В таких реакциях водород отщепляется от наименее гидрогенизированного (с наименьшим числом водородных атомов) углеродною атома (правило А.М.Зайцева):

H OH

| |

H3C—C—CH—CH3 ® H3C—C==CH—CH3 + H2O

| |

CH3 CH3

3-метилбутанол-2 2-метилбутен-2

4. Физические и химические свойства :

Физические свойства. Физические свойства некоторых алкенов показаны в табл. 1. Первые три представителя гомологического ряда алкенов (этилен, пропилен и бутилен) — газы, начиная с C5H10 (амилен, или пентен-1) — жидкости, а с С18Н36 — твердые вещества. С увеличением молекулярной массы повышаются температуры плавления и кипения. Алкены нормального строения кипят при более высокой температуре, чем их изомеры, имеющие изостроение. Температуры кипения цис-изомеров выше, чем транс-изомеров, а температуры плавления — наоборот.

Алкены плохо растворимы в воде (однако лучше, чем соответствующие алканы), но хорошо — в органических растворителях. Этилен и пропилен горят коптящим пламенем.

Таблица 1. Физические свойства некоторых алкенов

Название

Формула

t пл,°С

t кип,°С

d204

Этилен (этен)

С2Н4

-169,1

-103,7

0,5700

Пропилен (пропен)

С3Н6

-187,6

-47,7

0,5193*

Бутилен (бутен-1)

C4H8

-185,3

-6,3

0,5951

Цис-бутен-2

С4Н8

-138,9

3,7

0,6213

Транс-бутен-2

С4Н8

-105,5

0,9

0,6042

Изобутилен (2-метилпропен)

С4Н8

-140,4

-7,0

0,5942*

Амилен (пентен-1)

C5H10

-165,2

+30,1

0,6405

Гексилен (гексен-1)

С6Н12

-139,8

63,5

0,6730

Гептилен (гептен-1)

C7H14

-119

93,6

0,6970

Октилен (октен-1)

C8H16

-101,7

121,3

0,7140

Нонилен (нонен-1)

C9H18

-81,4

146,8

0,7290

Децилен (децен-1)

С10Н20

-66,3

170,6

0,7410

* Жидкий

Алкены малополярны, но легко поляризуются.

Химические свойства.

Алкены обладают значительной реакционной способностью. Их химические свойства определяются, главным образом, двойной углерод-углеродной связью. p-Связь, как наименее прочная и более доступная, при действии реагента разрывается, а освободившиеся валентности углеродных атомов затрачиваются на присоединение атомов, из которых состоит молекула реагента. Это можно представить в виде схемы:

\ p / \ /

C==C + A—B ® C—C

/ s \ / | s | \

А В

Таким образом, при реакциях присоединения двойная связь разрывается как бы наполовину (с сохранением s-связи).

Для алкенов, кроме присоединения, характерны еще реакции окисления и полимеризации.

Реакции присоединения. Чаще реакции присоединения идут по гетеролитическому типу, являясь реакциями электрофильного присоединения.


Случайные файлы

Файл
60643.rtf
14264.rtf
124218.rtf
117932.rtf
53367.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.