Черные дыры (10554-1)

Посмотреть архив целиком

Черные дыры

1. Черные дыры

Термин "черная дыра" появился совсем недавно. Его ввел в обиход в 1969 г. американский ученый Джон Уилер как мета-форическое выражение представления, возникшего по крайней мере 200 лет назад, когда существовали две теории света: в первой, кото-рой придерживался Ньютон, считалось, что свет состоит из частиц; согласно же второй теории, свет - это волны. Сейчас мы знаем, что на самом деле обе они правильны. В силу принципа частично-волнового дуализма квантовой механики свет может рассматривать-ся и как частицы, и как волны. В теории, в которой свет - волны, было непонятно, как будет действовать на него гравитация. Если же свет - поток частиц, то можно считать, что гравитация действует на них так же, как на пушечные ядра, ракеты и планеты. Сначала ученые думали, что частицы света перемещаются с бесконечной скоростью и поэтому гравитация не может их замедлить, но когда Рёмер установил, что скорость света конечна, стало ясно, что влияние гравитации может оказаться существенным.

Исходя из этого Джон Мичел, преподаватель из Кембриджа, в 1783 г. представил в журнал "Философские труды Лондонского Королевского общества" свою работу, в которой он указывал на то, что достаточно массивная и компактная звезда должна иметь столь сильное гравитационное поле, что свет не сможет выйти за его пределы: любой луч света, испущенный поверхностью такой звезды, не успев отойти от нее, будет втянут обратно ее гравитационным притяжением. Мичел считал, что таких звезд может быть очень много. Несмотря на то что их нельзя увидеть, так как их свет не может до нас дойти, мы тем не менее должны ощущать их грави-тационное притяжение. Подобные объекты называют сейчас черны-ми дырами, и этот термин отражает их суть: темные бездны в космическом пространстве. Через несколько лет после Мичела и Французский ученый Лаплас высказал, по-видимому, независимо от него аналогичное предположение. Небезынтересно, что Лаплас включил его лишь в первое и второе издания своей книги "Система мира", но исключил из более поздних изданий, сочтя, наверное, чер-ные дыры бредовой идеей. (К тому же в XIX в. корпускулярная теория света потеряла популярность. Стало казаться, что все явления можно объяснить с помощью волновой теории, а в ней воздействие гравитационных сил на свет вовсе не было очевидным.)

На самом деле свет нельзя рассматривать как пушечные ядра в теории тяготения Ньютона, потому что скорость света фиксиро-вана. (Пушечное ядро, вылетевшее вверх с поверхности Земли из-за гравитации будет замедляться и в конце концов остановится, а потом начнет падать. Фотон же должен продолжать дви-жение вверх с постоянной скоростью. Как же тогда ньютоновская гравитация может воздействовать на свет?) Последовательная тео-рия взаимодействия света и гравитации отсутствовала до 1915 г. когда Эйнштейн предложил общую теорию относительности. Но даже после этого прошло немало времени, пока стало наконец ясно, какие выводы следуют из теории Эйнштейна относительно мас-сивных звезд.

Чтобы понять, как возникает черная дыра, надо вспомнить о том, каков жизненный цикл звезды. Звезда образуется, когда большое количество газа (в основном водорода) начинает сжиматься сила-ми собственного гравитационного притяжения. В процессе сжатия атомы газа все чаще и чаще сталкиваются друг с другом, двига-ясь со всё большими и большими скоростями. В результате газ разогревается и в конце концов становится таким горячим, что ато-мы водорода, вместо того чтобы отскакивать друг от друга, будут сливаться, образуя гелий. Тепло, выделяющееся в этой реакции, которая напоминает управляемый взрыв водородной бомбы, и вы-зывает свечение звезды. Из-за дополнительного тепла давление газа возрастает до тех пор, пока не уравновесит гравитационное притя-жение, после чего газ перестает сжиматься. Это немного напоми-нает надутый резиновый шарик, в котором устанавливается равно-весие между давлением воздуха внутри, заставляющим шарик разду-ваться, и натяжением резины, под действием которого шарик сжи-мается. Подобно шарику, звезды будут долго оставаться в стабиль-ном состоянии, в котором выделяющимся в ядерных реакциях теп-лом уравновешивается гравитационное притяжение. Но в конце кон-цов у звезды кончится водород и другие виды ядерного топлива. Как ни парадоксально, но чем больше начальный запас топлива у звезды, тем быстрее оно истощается, потому что для компенсации гравитационного притяжения звезде надо тем сильнее разогреться, чем больше ее масса. А чем горячее звезда, тем быстрее расходует-ся ее топливо. Запаса топлива на Солнце хватит примерно на пять тысяч миллионов лет, но более тяжелые звезды израсходуют свое топливо всего за сто миллионов лет, т. е. за время, гораздо меньш^ возраста Вселенной. Израсходовав топливо, звезда начинает охлаж-даться и сжиматься, а вот что с ней происходит потом, стало понятно только в конце двадцатых годов нашего века.

В 1928 г. Субраманьян Чандрасекар, аспирант из Индии, отправился по морю в Англию, в Кембридж, чтобы пройти там курс обучения у крупнейшего специалиста в области общей теории от-носительности Артура Эддингтона. (Говорят, в начале двадцатых годов один журналист сказал Эддингтону, что он слышал, будто мире всего три человека понимают общую теорию относитель-ности. Эддингтон, помолчав, сказал: "Я думаю - кто же третий?"). во время своего путешествия из Индии Чандрасекар вычислил, какой величины должна быть звезда, чтобы, израсходовав цели-ком свое топливо, она все же могла бы противостоять воздей-ствию собственных гравитационных сил. Чандрасекар рассуждал так. Когда звезда уменьшается, частицы вещества очень сильно сближаются друг с другом и в силу принципа запрета (исключения) Паули их скорости должны все больше различаться. Следовательно, частицы стремятся разойтись и звезда расширяется. Таким образом, радиус звезды может удерживаться постоянным благодаря равно-весию между гравитационным притяжением и возникающим в силу принципа Паули отталкиванием, точь-в-точь как на более ранней стадии развития звезды гравитационные силы уравновешивались ее тепловым расширением.

Однако Чандрасекар понимал, что отталкивание, обусловленное принципом Паули, не беспредельно. Согласно теории относитель-ности, максимальная разница скоростей частиц вещества в звезде равна скорости света. Это значит, что, когда звезда становится достаточно плотной, отталкивание, обусловленное принципом Пау-ли, должно стать меньше, чем гравитационное притяжение. Чандрасекар рассчитал, что если масса холодной звезды более чем в полтора раза превышает массу Солнца, то эта звезда не сможет противостоять собственной гравитации. (Данное значение массы сейчас называют пределом Чандрасекара.) Приблизительно в то же время аналогичное открытие сделал советский физик Л. Д. Ландау.

Выводы Чандрасекара и Ландау имели важные следствия от-носительно судьбы звезд с большой массой. Если масса звезды меньше предела Чандрасекара, то она в конце концов может пере-стать сокращаться, превратившись в "белого карлика" - одно из возможных конечных состояний звезды. "Белый карлик" имеет в радиусе несколько тысяч километров, плотность - сотни тонн на кубический сантиметр и удерживается в равновесии благодаря отталкиванию электронов в его веществе, отталкиванию, которое возникает из-за принципа Паули. На небе видно немало белых Орликов. Одним из первых был открыт белый карлик, вращающийся вокруг Сириуса,- самой яркой звезды на ночном небе.

Ландау показал, что звезда может оказаться и в другом конечном состоянии, предельная масса которого равна одной-двум массам Солнца, а размеры даже меньше, чем у белого карлика. Эти звезды тоже должны существовать благодаря возникающему из-за принципа Паули отталкиванию, но не между электронами, а между протонами и нейтронами. Поэтому такие звезды получили название нейтронных звезд. Их радиус не больше нескольким десятков километров, а плотность - сотни миллионов тонн на ку-бический сантиметр. Когда Ландау предсказал нейтронные звезды наблюдать их никто не умел, а реальная возможность их наблюдения появилась значительно позже.

Если масса звезды превышает предел Чандрасекара, то когда ее топливо кончается, возникают большие сложности. Чтобы избежать катастрофического гравитационного коллапса, звезда может взор-ваться или каким-то образом выбросить из себя часть вещества чтобы масса стала меньше предельной. Трудно, однако, поверить что так происходит со всеми звездами независимо от их размеров. Как звезда узнает, что ей пора терять вес? А даже если бы каждой звезде удалось потерять в весе настолько, чтобы избежать коллап-са, то что произошло бы, если бы мы увеличили массу белого карли-ка или нейтронной звезды так, что она превысила бы предел? Может быть, тогда произошел бы коллапс и плотность звезды стала бесконечной? Эддингтон был так этим поражен, что отказался ве-рить результату Чандрасекара. Он считал просто невозможным, чтобы звезда сколлапсировала в точку. Такой позиции придержива-лось большинство ученых: сам Эйнштейн заявил в своей статье, что звезды не могут сжиматься до нулевых размеров. Враждеб-ное отношение ученых, в особенности Эддингтона, который был первым учителем Чандрасекара и главным авторитетом в иссле-довании строения звезд, вынудили Чандрасекара оставить работу в прежнем направлении и переключиться на другие задачи астро-номии, такие, как движение звездных скоплений. Однако Нобелев-ская премия 1983 г. была, по крайней мере частично, присуждена Чандрасекару за ранние работы, связанные с предельной массой хо-лодных звезд.


Случайные файлы

Файл
55724.rtf
130552.rtf
30989-1.rtf
143643.doc
159484.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.