Ошибка Лоренца (8828-1)

Посмотреть архив целиком

Ошибка Лоренца

Мария Корнева

Введение

В физике часто используются очевидные положения, которые представляются достаточно ясными и не требуют последующего обоснования. Это не всегда оправдано, поскольку есть случаи, приводящие к парадоксальным следствиям. Тогда приходится возвращаться к анализу «очевидных положений» и допущений. Одним из таких очевидных положений является вывод преобразования Лоренца.

Эйнштейн в начале своего вывода преобразования Лоренца повторяет допущение: «пусть x'=x–vt» [1]. Мы не будем останавливаться на логике доказательства, а сразу приведем конечный результат:

x' = (x – vt)/(1 – v2/c2)1/2.

Сравнивая эти два выражения, легко установить их несоответствие.

В математике есть метод доказательства от противного. Если мы в начале доказательства полагаем, что a=b, а приходим к выводу, что a=k∙b≠b, то:

либо исходная посылка не верна;

либо имеет место ошибка в доказательстве.

Именно эта ошибка Лоренца имеет место при выводе преобразования Лоренца. Она повторяется у Пуанкаре, у Эйнштейна и других. Но почему никто не обратил внимания на это несоответствие?

Рассмотрим другой подход.

1. Класс преобразований

Решение любой математической задачи опирается на теорему о существовании и единственности решения. Решение может не существовать, может существовать множество решений или же существует одно единственное. Мы поставим следующую задачу. Будем искать класс преобразований 4-координат, при которых уравнения Максвелла сохраняют свою форму в соответствии с принципом Галилея-Пуанкаре [2]. Задача существования преобразования уже решена, т.к. существует преобразование Лоренца.

Рассмотрим две инерциальные системы отсчета K и K', которые движутся друг относительно друга со скоростью V. Пространственно-временные координаты системы K(x; y; z; ct) должны быть связаны с соответствующими координатами K'(x'; y'; z'; ct') с помощью матрицы преобразования [T(V/c)].

[X'] = [T(V/c)][X],

(1.1)

где: [X] и [X'] – вектор столбцы 4-координат K и K'; [Т(V/c)] – матрица преобразования, зависящая только от скорости относительного движения сравниваемых инерциальных систем.

К матрице [Т] предъявляются следующие требования:

определитель матрицы должен быть равным единице; det[T]=1;

должна существовать матрица обратного преобразования из K' в K, т.е. матрица [Т(V/c)]–1;

матрица обратного преобразования должна получаться заменой V на –V в матрице [T(V/c)]. Это следует из равноправия инерциальных систем отсчета [T(V/c)]–1=[T(–V/c)].

Из этих условий можно определить общий вид матрицы преобразований координат и времени, сохраняющей инвариантную форму уравнений Максвелла. Уравнения, соответствующие (1.1), можно записать в следующей форме:

x' = x(1 + f2(V/c))1/2 – f(V/c) ct; y' = y; z' = z; ct' = ct(1 + f2(V/c))1/2 – f(V/c) x,

(1.2)

где f(V/c) есть нечетная функция относительно V/c. При малых скоростях V/c эта функция равна f≈V/c.

Перечисленных выше условий не достаточно, к сожалению, чтобы определить явный вид функции f(V/c). Она может быть V/c, или sin(V/c), или sh(V/c) и т.д. В частном случае, когда f=V/(c2–V2)1/2, мы получаем преобразование Лоренца*.

* В действительности имеет место более широкий класс преобразований: x'=x(1+f1∙f2)1/2–f1ct; y'=y; z'=z; ct'=ct(1+f1f2)1/2–f2∙x где f1 и f2 – некоторые нечетные функции относительно V/c. При малых скоростях эти функции равны V/c. Однако если положить, что пространственная координата x и временная ct имеют одинаковые математические свойства, тогда f1=f2=f. В дальнейшем мы будем придерживаться этой гипотезы.

2. Физическая интерпретация преобразования

В наших предшествующих исследованиях (например, [2], [3] и других) мы выяснили физический смысл преобразований Лоренца. Его можно распространить на любое преобразование найденного выше класса. Напомним:

Системы отсчета K и K', связываемые преобразованием (1.2) этого класса, равноправны для электромагнитных волн, описываемых уравнениями Максвелла.

Время во всех инерциальных системах едино.

Пространство является общим и евклидовым для всех инерциальных систем отсчета.

Никаких изменений пространства и времени при переходе из одной инерциальной системы отсчета в другую не происходит.

Скорость света во всех инерциальных системах отсчета одинакова (принцип Галилея-Пуанкаре [2]).

Преобразование (1.2) описывает наблюдаемые в неподвижной системе отсчета процессы и явления, которые протекают в движущейся системе отсчета. Информация, доставляемая нам световыми лучами, может иметь искажения из-за эффекта Доплера и искажения фронта светового потока.

Рассмотрим некоторые явления, связанные с переходом из одной инерциальной системы отсчета в другую.

Изменение длины движущейся линейки

Пусть в K' имеется линейка длиной Δx', ориентированная вдоль вектора скорости относительного движения систем отсчета K и K'. Величина Δx' есть истинная (действительная) длина линейки. В системе K мы будем видеть (измерять) другую «длину» движущейся линейки. Новая длина будет зависеть от следующих величин: f(V/c) и θ. Угол θ образован вектором скорости относительного движения V и вектором скорости света, идущего от движущейся линейки к неподвижному наблюдателю в системе отсчета наблюдателя.

Δx = Δx' / [(1 + f 2)1/2 – f∙cos θ].

(2.1)

Отсюда следует, что существует угол наблюдения θ0 (критический угол), при котором мы измерим истинную длину движущейся линейки.

Δx = Δx' при θ0 = arccos [(1 + f 2)1/2 – 1) / f].

При θ<θ0 линейка будет «казаться» длиннее, а при θ>θ0 – короче. Это обусловлено величиной искажения фронта волны. Интересно отметить, что этот критический угол θ0 получается при условии, что θ0=π–θ'.

Эффект Доплера

Пусть в системе K' имеется генератор, излучающий монохроматический свет с частотой ω0. В системе K мы будем измерять другую частоту (интервалы времени):

ω = ω0 / [(1 + f 2) – f∙cos θ].

(2.2)

Как и в предыдущем случае эффект Доплера отсутствует (ω=ω0) при угле наблюдения θ=θ0.

3. Кажущаяся и истинная скорость света

Относительную скорость движения инерциальных систем можно измерить разными способами.

Первый способ

Он рассмотрен в [2]. В системе K' имеется неподвижный источник, который излучает короткие световые импульсы через равные интервалы времени ΔT'. В системе K мы будем видеть траекторию, «разделенную» этими вспышками на равные интервалы времени Δx, которые покоятся в системе K. Измеряя интервал времени между вспышками ΔT, в системе K можно определить наблюдаемую (или кажущуюся) скорость движения инерциальных систем. «Кажущейся» мы называем эту скорость потому, что мы наблюдаем в системе K «искаженный» движением интервал времени ΔT. Эта скорость будет зависеть от угла наблюдения θ.

Второй способ

Мы можем разместить линейку длиной Δx' в системе K', ориентированную вдоль скорости относительного движения инерциальных систем. В системе K траекторией движения будет прямая линия, на которой мы зафиксируем неподвижную точку. Измеряя время ΔT, за которое линейка проходит эту точку, можно вычислить кажущуюся скорость движения. «Кажущейся» мы называем эту скорость потому, что мы наблюдаем в системе K «искаженную» движением длину отрезка Δx. Эта скорость будет также зависеть от угла наблюдения θ.

Независимо от способа измерения имеют место следующие выражения для этой скорости:

vкаж = Δx / ΔT [(1 + f 2) – f∙cos θ].

(3.1)

Как и ранее, при критическом угле наблюдения θ = θ0 мы будем измерять истинную (или действительную) скорость относительного движения V инерциальных систем отсчета. Скорость V есть галилеевая скорость относительного движения инерциальных систем отсчета.

vкаж0) = Δx / ΔT' = V; (1-й способ)

(3.2)

vкаж0) = Δx' / ΔT = V. (2-й способ)

(3.3)

Это не удивительно, поскольку интервалы времени и длины при критическом угле наблюдения θ=θ0 отображаются безо всяких искажений. Здесь как бы реализуется преобразование Галилея.

Итак:

vкаж = V / [(1 + f 2) – f∙cos θ].

Рассмотрим те же два случая с точки зрения формального подхода. Рассмотрим уравнение (1.2) в приращениях.

Δx' = Δx(1 + f 2(V/c))1/2 – f (V/c) cΔt; cΔt' = cΔt(1 + f 2(V/c))1/2 – f (V/cx.

1-й случай. Мы рассматриваем в K' неподвижную точку. Следовательно, Δx'=0. После простых выкладок получим выражения для кажущейся и действительной скоростей:

vкаж = Δx / ΔT(90о) = cf / (1 + f 2)1/2 = cV / (1 + V 2)1/2; θ = 90о;

(3.4)

vдейств = Δx / ΔT' = cf = V.

(3.5)

Такие же выражения мы получим и для второго случая.

Итак, выражение (3.4) есть кажущаяся скорость при θ = 90о. Выражение (3.5) есть действительная (галилеева) скорость. Отсюда нетрудно найти функцию f. Она равна

f = V/c.

(3.6)


Случайные файлы

Файл
130099.rtf
49269.rtf
74150-1.rtf
145619.doc
118575.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.