Обратная скорость света (8507-1)

Посмотреть архив целиком

Обратная скорость света

Нестандартный анализ неклассического движения

Павел Полуян

Математическое псевдоевклидово пространство и физические размерности

Как известно, фундаментальным достижением релятивистской физики явилось объединение пространства и времени в 4-мерном псевдоевклидовом континууме Минковского. Скорость света С оказалась коэффициентом пропорциональности, связывающим координаты x и t в рамках некоторого линейного пространства, обладающего псевдоевклидовыми метрическими свойствами. Иными словами, было построено пространство, где по осям откладываются величины с размерностью длины (пространственного протяжения), но на одной из них эта размерность появляется за счет умножения временного периода на коэффициент iC.

Если рассматривать простейшее движение материальной точки вдоль прямой, псевдоевклидово пространство оказывается комплексной плоскостью, причем в качестве мнимой оси представлена ось времени t[с]. Можно подойти к этому построению формально, отвлекаясь от исторических аспектов формирования этих представлений, то есть поставить вопрос: если величины x[м] и t[с] связаны коэффициентом пропорциональности и могут быть представлены в качестве координатных осей единого пространства – это объективная предпосылка, то почему мы берем за основу псевдоевклидово пространство с размерностью длины? Ведь ничто не мешает нам использовать коэффициент пропорциональности для перевода размерности x[м] в размерность t[с] для того, чтобы построить комплексную плоскость, где мнимой осью станет ось x. С формальной точки зрения такое построение совершенно равноправно с традиционным, но его физическая интерпретация с первого взгляда не ясна.

Предположим, что мы построили соответствующую комплексную плоскость (здесь и далее рассматривается простейший случай двумерного псевдоевклидова пространства), где размерность по осям – время, а мнимой осью оказывается x с коэффициентом i·1/C[с/м]. Понятно, что возникнут здесь аналоги преобразований Лоренца, а величина 1/C окажется неким инвариантом одинаковым для всех «систем отсчета» – предельным значением, к которому будут при соответствующем законе сложения приближаться складываемые «обратные скорости». Значит ли это, что должна быть аналогичная скорости света предельная минимальная скорость? Такое предположение кажется довольно произвольным, а вводимая таким образом «скорость темноты» – выглядит экзотично. Однако, если мы не будем однозначно отождествлять размерность [с/м] с характеристикой поступательного перемещения, а просто признаем, что эта размерность соответствует некоей реальной константе, то вопрос разрешается элементарно. Если эмпирическая предельная скорость C реально существует и измеряется в [м/с], то должна существовать некая эмпирическая константа, измеряемая в [с/м]. Требуемая константа в физике известна – она образуется из соотношения e2/h где e – заряд электрона, а h – постоянная Планка.

Подведем итог. Мы начинали с констатации бесспорного факта: между пространством и временем, величинами x и t существует пропорциональность, позволяющая в релятивистской теории построить псевдоевклидов континуум Минковского. Мы пришли к выводу, что с формальной точки зрения открываются два альтернативных варианта: в качестве мнимой может быть представлена ось t (размерность координатных осей [м]), или ось x (размерность координатных осей [с]). Последняя конструкция, математически равноправная с исходной, являясь также псевдоевклидовым пространством, в качестве коэффициента пропорциональности требует величины i·1/C с размерностью [с/м]. Эта «обратная скорость света» должна, следовательно, также найти свою репрезентацию среди физических эмпирических констант, что нетрудно сделать, отождествив ее с комбинацией e2/h (e – это заряд электрона, h – постоянная Планка).

Отношение скорости света к данной комбинации эмпирических констант дает нам безразмерную величину, именуемую постоянной тонкой структуры. Ее величина округленно равна 137, и до сих пор не прекращаются попытки выразить это число через комбинацию математических констант «π» и «е». Теперь можно утверждать, что эти попытки не лишены оснований.

Принцип относительности и две формы представления движения

То, что чисто формальный математический подход позволяет здесь получить необычный физический результат, а безразмерная физическая константа – постоянная тонкой структуры – приобретает тут важный математический смысл, связано с нетривиальной математической проблемой. Речь идет о логической связи стандартного классического анализа и нестандартной модели анализа, с необходимостью расширения поля действительных чисел за счет введения гипердействительных чисел – актуально бесконечно малых и актуально бесконечно больших, для которых свойственно нарушение аксиомы Евдокса–Архимеда. Этому вопросу посвящены работы основателя нестандартного анализа Абрахама Робинсона. Он, в частности, писал: «Мы собираемся показать, что в настоящих рамках можно развить исчисление бесконечно малых и бесконечно больших величин. Это дает нам возможность заново сформулировать многие известные результаты теории функций на языке бесконечно малых так, как это было предсказано в неопределенной форме еще Лейбницем» [1, с.325]. И еще: «Нестандартное дифференциальное исчисление может конкурировать в простоте с самым ортодоксальным подходом» [1, с.340]. Об интегрировании: «Наше ограничение разбиениями на интервалы одинаковой длины слишком искусственно. Мы построим аппарат, который позволит нам рассмотреть более общие разбиения» [1, с.341]. Мы не будем касаться этой проблемы, а сосредоточимся на физической интерпретации полученного результата.

Инвариант C – скорость света – это не просто эмпирическая константа, а фундаментальная величина, входящая в важнейшие физические уравнения. Понятие скорости – это одно из основных физических представлений. А в нашем случае мы получили некую комбинацию констант, которая, хотя и имеет подходящую размерность – обратную скорости, но ее теоретическая значимость и связь с основополагающими понятиями физики пока не ясны. Тем не менее, оказывается, такую связь можно проследить.

Начнем с основополагающего для механики представления – с принципа относительности. Содержание принципа относительности изложить легко: абсолютного движения нет, то есть две точки могут двигаться только относительно друг друга. Если мы берем одну из них за точку отсчета, то полагаем ее покоящейся, а другая относительно нее оказывается двигающейся. Совершенно так же мы можем эту движущуюся принять за неподвижную точку отсчета и считать двигающейся другую. Представление о движении совершенно естественно и необходимо требует принципа относительности – ведь изменение расстояния между точками со временем происходит между ними.

Схематически принцип относительности поясняется на примере двух точек.

АВ

Принимаем одну за систему отсчета – вторая «движется относительно ее» и наоборот. Представим: в пустом пространстве находятся две точки (математически безразмерные), разделенные некоторым расстоянием. Теперь постараемся представить, что это расстояние изменяется... Но каким образом можно здесь зафиксировать «изменение»? Анри Пуанкаре однажды провел мысленный эксперимент – спросил: что было бы, если бы расстояния между всеми точками мира внезапно увеличились в два раза? И ответил: мир этого не заметил бы. Думаю, все понятно. Для того, чтобы можно было говорить об изменении расстояния между двумя точками, надо представить себе наличие еще одной точки C, которая относительно какой-либо из заданных неподвижна.

А←const→ВС

Неподвижна – то есть находится все время от нее на одном и том же расстоянии. Тут пока никаких сложностей нет: просто мы декларируем, что нам нужна не точка, а система отсчета с заданным эталоном длины. Но ведь мы начинали с двух точек, потом добавили третью и вроде как можем теперь говорить о движении, однако правомерно задать вопрос: как мы определим, что между точками А и В расстояние постоянно, а между А и С изменяется? Ведь с таким же успехом мы можем принять расстояние ВС за эталон, а прежний эталон считать изменяющимся!

АВ←const→С

В этих рассуждениях нет ничего нелогичного, наоборот, мы ввели третью точку и эталонное расстояние именно потому, что не могли определить изменение расстояния, но точно также мы не можем определить и неизменность его меры. Точнее можем определять его и так и так: то АВ берем за неизменный эталон и говорим, что точка С равномерно удаляется от А и от В, то берем за неизменность расстояние между В и С, тогда прежнее эталонное расстояние АВ должно полагаться изменяющимся.

Но ведь, если менять местами эталоны длины, получится странная картина. Мысленно представим, что «равномерно движущаяся» С как бы неподвижна и задает нам меру расстояния «=const», тогда «реально неподвижная» относительно этой меры будет двигаться неравномерно: В приближается к А все время замедляясь. В самом абсурдном варианте она ускоряется от нуля до бесконечности, потом «прилетает» из бесконечности с другой стороны и начинает опять замедляться до нуля – всю оставшуюся в запасе вечность.

Вышеописанный вывод кажется настолько «диким», что первое желание – отбросить его за ненадобностью. Проблема в том, что если мы в принципе относительности Галилея – Ньютона открываем для себя взаимоэквивалентность двух точек именно в процессе их мысленной замены, то почему в логически необходимой системе из трех точек вдруг должны отвергнуть взаимозамену совершенно такую же? Логические возможности возникают не для того, чтобы мы их просто отбрасывали, надо все-таки попытаться понять, что обнаруживается в этой странной ситуации. Может быть, все дело в неправильной интерпретации полученных результатов?


Случайные файлы

Файл
79658.rtf
43506.rtf
106818.rtf
160371.rtf
9994.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.