Управління запасами (98464)

Посмотреть архив целиком

Управління запасами

Оптимальний розмір запасів

Для отримання більшого прибутку необхідно звести змінні витрати до мінімуму. Тут ви розглянете проблему мінімізації змінних витрат за допомогою управління запасами.

Нехай на протязі місяця ви продаєте q одиниць продукції , котру ви закупаєтє n разів по Q одиниць в партії. При цьому витрати на зберігання однієї штуки на місяць становлять , а вартість заказа партії дорівнює f .

Тоді сумарні витрати підтримки запасів дорівнюють:

(1.66)

Змінні витрати (VC)=витрати на зберіганняштук на протязі місяця + Вартість заказа nартій . У формулі (1.66) стоїть вартість зберігання штук на протязі місяця, так як по ходу продаж , кількість зберігаємого товару буде поступово зменьшуватись до 0 ,після чого буде закупатися нова партія (мал(1.24)).

Знайдемо мінімум змінних витрат VC .

Теорема 1.7. Об оптимальному розмірі закупаємої партії:

Нехай в одиницю часу ,наприклад ,місяць, Ви закупаєте q одиниць продукції, котру ви закупаєтє n разів по Q одиниць в партії. При цьому витрати на зберігання однієї штуки на місяць становлять , а вартість заказа партії дорівнює f .

Тоді оптимальна кількість заказів визначається за формулою:

(1.67)

Оптимальний розмір закупаємої партії визначається формулою:

(1.68)

Оптимальні змінні витрати підтримки запасів визначаються формулою:

(1.69)

Доведення теореми (1.7):

Для цього візьмемо похідну по Q та прирівняємо її до 0:

або

Формула (1.68) дає оптимальний розмір закупаємої партії ,при цьому кількість закупок буде визначатися за формулою:

або

,

а оптимальне змінні витрати підтримки запасів визначаються за формулою:

або

Теорема доказана.

Так, якщо на протязі місяця Вам треба 1000 штук,q=1000,вартість заказа партії 10$ , При цьому витрати на зберігання однієї штуки на місяць становлять $1.5, формула (1.69) для визначення кількості штук дає:

формула (1,67)-кількість закупок на місяць:

формула (1,69)-мінімально можливі витрати на підтримку запасів:

в місяць

при наівному рішенні купити відразу 1000 одиниць Ви би мали:

порівняно з «наівним» рішенням ви зекономили

$810-$179.85=$630.15

Таким чином раціональне управління запасом дозволило зменшити витрати зберігання у

Чисельний приклад 1,28

Нехай у вас витрати зберігання дорівнюють $1.6/штука за місяць ,на місяць потрібно 1000 штук, вартість заказа партії $10. Вас цікавлять витрати на підтримку запасів в залежності від обєму закупаємої партії

Q

10

20

40

80

112

160

320

480

540

820

100

VC

1

516

282

189

179

191

287

405

528

668

810

В першій строке розміщені різні значення обєму закупаємої партії в другій витрати на збереження запасів.

Кількість зберегаємих на складі деталей показано на малюнку 1,25.

Визначення 1,37 Коефіцієнт економії КЕ

Коефіцієнт економії КЕ є відношення витрат початкового, нівного варіанта закупки відразу q одиниць товару до витрат оптимального варіанту.

Визначення 1,38 Рівень оптимальних витрат РОВ

Визначимо рівень оптимальних витрат РОВ як відношення витрат оптимального варіанта до витрат наівного варіанта .

Коефіцієнт економії КЕ показує в скільки раз ви знизили витрати , а рівень оптимальних витрат РОВ показує долю оптимальних витрат від витрат початкового варіанту.

Теорема 1,8 Коефіцієнт економії та Рівень оптимальних витрат

При виконанні умов теореми 1,7 вірно:

(1,70)

,де (1,71)

(1,72)

Доведення:

Рівень оптимальних витрат визначається за формулою:

Замінивши на х отримаємо:

Теорему доведено.

Знайдемо похідну КЕ по х :

Таким чином КЕ мінімален та дорівнює одиниці при x=1, або в цьому нема нічого не звичайного :в цьому випадку розмір оптимальної партії дорівнює q та ви робите лише одну покупку, як в наівному варіанті.

Чисельний приклад 1,29 Коефіцієнт економії

Коефіцієнт економії та рівень оптимальних витрат залежать від коефіцієнта х,

Нас цікавлять значення коефіцієнта економії та рівня оптимальних витратв залежності від значення х ,розрахунки робимо за формулами (1,70) (1,71).

X

0,02

0,04

0,06

0,08

0,1

0,3

0,5

0,7

0,9

1

1,1

1,2

1,4

1,8

3

7

15

РОВ

0,28

0,38

0,46

0,52

0,57

0,84

0,94

0,98

1

1

1

1

0,99

0,96

0,87

0,66

0,48

КЕ

3,61

2,6

2,16

1,91

1,74

1,19

1,06

1,02

1

1

1

1

1,01

1,04

1,15

1,51

2,07

В першій строчці знаходиться параметр х ,розрахований по формулі(1,72),в другій та третій коефіцієнти РОВ та КЕ ,розраховані по формулі (1.70)та(1.71)

  1. Оптимальний розмір готівки

Нехай тепер Вам на місяць треба готівки в розмірі М. Інші вільні кошти ви тримаєте в банку або в цінних паперах, наприклад облігаціях, приносящих r% на місяць(в одиничний проміжок часу).Кожного разу при знятті коштів з банківського депозиту або при продажу облігацій Ви платите фіксовану суму за проведення операцій в розмірі f наприклад комісійні за продаж облігацій Вам треба визначити оптимальний режим взяття готівки.

Ця задача аналогічна попередній задачі визначення оптимального розміра запасів. Розгляньте її більш детально. Якщо ви будете знімати кошти партіями розміром m , то в середньому у Вас на руках будеготівки: m в момент зняття грошей та 0 перед зняттям. Тому ви не до отримаєте відсотки розмірі . В тій же час ( період) Ви будете брати гріши раз, виплачуючи за це комісійні в розмірі .Тому сумарні витрати VC зберігання готівки будуть: (1,73)

Вас цікавить мінімізація цих витрат .Для цього візьмемо похідну по m та прирівняємо її до 0 :

(1,74)

Ви бачите ,що формула(1,74) повністю співпадає з формулою (1.68).

Так, якщо на місяць вам потрібно $10 000,гроши ви тримаєте в банку на рахунку з 6% річних або 0,5%на місяць та витрати знаття грошей становлять $2, наприклад , комісійні за зняття грошей за допомогою пластикової картки ,та по формулі (1.74) Ви знаходите оптимальний розмір суми для зняття:

Ви бачите, що оптимальні суми зняття грошей становлять близько $2800

Якщо ж гроши лежать на депозиті під 12% річних або 1% річних ,то оптимальний розмір знімаємої суми становлять вже

  1. Довжина черги та оптимальний розмір запасів

В попередньому розділі ви розглянули управління оборотним капіталом в умовах визначеності .Але ж якщо до вас приходять покупці випадковим чином та закупають випадкову кількість товару, то не маючи запасу, ви не завжди будете в змозі задовольнити бажання покупців ,що може привести чи до сплати неустойки за не можливість доставити партію товару , чи до втрати покупців. В тей же самий час мати дуже великий розмір запасу є невигідним з за заморожених в запасах коштів та з за плати за зберігання запасів.

Розгляньте цю ситуацію більш детально. Нехай до вас в одиницю часу з ймовірністю х приходить запит на одиничну партію товару ,та з ймовірністю y обслуговується запит на одиничну партію товару. Вас цікавить середня величина незадоволеного попиту, котрий у Вас накопиться з часом.

Теорема 1.9 Середня довжина черги

Нехай довжина черги може приймати цілі невідємні числа :0,1,2,.... При цьому равна 0 довжина черги означає відсутність черги. Нехай до вас в одиницю часу з ймовірністю х приходить запит на одиничну партію товару ,та з ймовірністю y обслуговується запит на одиничну партію товару, з ймовірністю 1-х-у довжина черги залишається не змінною.

Тоді середня довжина черги визначається за формулою

(1,75)

Доведення:

Нехай r(i) визначає ймовірність того, що Ви маєте незадоволений попит в І партій Тоді ймовірність того, що в наступний момент часу зявиться новий клієнт та середня величина незадоволеного попиту стане І+1 з ймовірністю xr(I):

(1,76)

де ймовірність переходу з стану з величиною незадоволеного попиту І до стану з величиною незадоволеного попиту І+1.

З ймовірністю у Вам підвезуть одиничну партію товару та середня величина незадоволеного попиту стане І-1 з ймовірністю :

(1,77)


Случайные файлы

Файл
8415-1.rtf
72484.doc
27739.rtf
31112.rtf
170691.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.