Изменение качества копченых рыбных товаров при их хранении (ыба-rrjytw)

Посмотреть архив целиком


МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ







Кафедра товароведения продовольственных товаров




Курсовая работа на тему:


Изменение качества копченых рыбных товаров при их хранении.





Выполнил: студент III курса ВШТ, ДВГ-2


………..

Кислейко К.А.

Руководитель:


………..

Надин Б.Е.





Минск, 2000

Содержание


Введение 

1. Химический и микробиологический состав, пищевая ценность 

1.1 Химический состав 

1.2 Микробиологический состав. 

2. Процессы идущие в копченых рыбных товарах при их хранении. 

2.1 Принципы и способы хранения. 

2.2 Биохимические и физические процессы. 

3. Проблемы сохранения качества рыбы при ее хранении. 

4. Дефекты рыбных товаров. 

Заключение 

Список литературы 



Введение

Копчение может быть естественным (без примене­ния средств, активизирующих процесс), искусственным (с применением средств, активизирующих процесс, на­пример электрокопчение) и комбинированным (на от­дельных стадиях процесса применяют средства, активи­зирующие процесс — токи высокой частоты и высокого напряжения, инфракрасные и ультрафиолетовые лучи и т. п.).

Различают два метода придания рыбе и прочим пищевым объектам свойств копченой продукции: путем обработки в дымовоздушной среде (обычное копчение) и обработанной препаратами (бездымное копчение).

Обычное копчение рыбы предполагает использование в процессе тепловой обработки и качестве рабочей среды дыма (дымовоздушной смеси). Дым - типичный аэрозоль, образующийся в результате частичной конденсации газообразных продуктов термиче­ского разложения различного древесного материала. Как всякий аэро­золь, дым состоит из двух частей, капелъно-жидкой (дисперсной) фазы и газа (дисперсионная среда). При этом к капельно-жидкой фазе, как правило, относятся достаточно крупные частицы смолы и сажи, а также летучей золы. Присутствие в дыме дисперсной фазы делает его видимым, газообразная среда выступает в роли носителя фазы частиц. Физическим аналогом дыма в природе может являться туман или пар. Для обработки рыбных и мясных продуктов применяют так называемый "технологиче­ский дым" — дым, обладающий определенными физическими, физико-химическими и химическими характеристиками. Качество дыма можно определить путем оценки качества готовой продукции. Однако это кос­венная оценка, так как влияние на качество готовой продукции оказы­вают также химический состав сырья и технологические режимы (пара­метры) обработки.

Технологические свойства дыма зависят от его химического состава и прежде всего от степени насыщения ароматическими веществами Во время копчения многочисленные компоненты дыма попадают в обрабатываемый продукт и обеспечивают ею консервацию, ароматизацию и нужную окраску. Предполагается, что в этих процессах должны прини­мать участие лишь 10% из 5000 компонентов, регистрируемых в дыме.

В настоящее время идентифицировано более 200 химических соеди­нений дыма, участвующих в процессе копчения. К ним относятся в ос­новном коптильные компоненты фенольной группы, карбонильные сое­динения (альдегиды и кетоны), кислоты, производные фурана, лактонов, полициклических ароматических углеводородов, спиртов и эфиров.

Наиболее полно исследована роль (в процессе придания продукту специфических свойств) трех групп органических веществ: фенолов, кислот и карбонильных соединений. [1, c. 87]

Обработка продуктов жидкими коп­тильными средами (Бездымное копчение) как способ кон­сервирования получила распро­странение в последние 30-35 лет. хотя по­пытки использовать "жидкий дым" предпри­нимались еще в начале 19-го века.

Применение коптильных препаратов в технологиях мясных и рыбных продуктов раньше всех было освоено в бывшем Совет­ском Союзе, Польше, Венгрии, Чехословакии и США. В этих странах были созданы коп­тильные препараты, а также предложены способы их использования, обеспечивающие высокое качество готовых изделий. Преиму­щество отдавалось способам поверхностного нанесения коптильных препаратов (окунание, орошение, аэрозольный способ или обработ­ка парообразной средой), поскольку в этом случае коптильные компоненты проникают через кожу рыбы или оболочку колбас, т. е. аналогично традиционному копчению дымом

В дальнейшем западноевропейские про­изводители также стали широко использо­вать жидкие коптильные среды. На рынке по­явились препараты серии Scansmoke в виде водных и масляных экстрактов, эмульсий, твердых добавок на мальтодекстриновом но­сителе, муке или ароматизированных солей, применяемые для широкого ассортимента пи­щевых продуктов.

Распространению бездымного копчения способствуют не только бесспорные технологические преи­мущества, но и гарантированная санитарная и токсиколого-гигиеническая без­опасность процесса. Повышается его экологичность, так как выбросы углерода в атмо­сферу либо отсутствуют, либо сокращаются на несколько порядков, значительно умень­шается расход воды и моющих средств на са­нитарную обработку.

Жидкие коптильные среды получают при сухой перегонке древесины путем кон­денсации дымовых выбросов или их отдель­ных фракций в различных растворителях. Ароматические и консервирующие свойства древесины лучше всего сохраняются в вод­ных конденсатах. Они расслаиваются на смолистую и водную фракции. Первая менее богата ароматическими соединениями, и в ней много вредных и нежелательных ве­ществ, в частности изо- и гетерополициклических ароматических углеводородов и низ­комолекулярных веществ типа метанола, фенола, формальдегида.

Водные коптильные конденсаты содер­жат важнейшие для копчения производные гваякола и сирингола, фурфурол и его гомо­логи, пирокатехин, циклотен, глиоксаль, ва­нилин, бензойную, салициловую, сиреневую кислоты и другие вещества. Все они облада­ют высокой растворимостью в воде и при правильных режимах сорбции сохраняют свои нативные свойства. Вода выполняет роль транспортного средства, растворителя и ускоряет реакции копчения. При обработке продуктов водными конденсатами усилива­ются и стабилизируются антимикробный и антиокислительный эффекты, интенсивнее идет цветообразование.

Для перехода на бездымное копчение во­все не обязательно перестраивать аппаратурно-технологические схемы. Достаточно установить в универсальных термокамерах, обычно используемых в коптильных произ­водствах, специальные форсунки. За счет тонкого распыления коптильного препарата под давлением 4-6 атм. образуется аэрозоль­ная среда, адекватная по физико-химическим свойствам дыму. При этом процесс удобно регулировать как по внешним параметрам (дозировка препарата), так и по органолептическим показателям готовых изделий (цвет, аромат) Установки бездымного копчения вы­пускаются в ряде стран Европы, а также в России.[9]

В промышленно развитых странах в последние годы распространение получили такие способы копчения, как кратковременное холодное копчение (продолжительность до 2 ч. температура процесса не выше 30°С), а также горячее и полугорячее копчение.

Основными видами сырья, используемого для выработки копче­ной продукции, являются сельдь, скумбрия, лосось, тунец, сардина, треска, пикша, угорь, форель. В последние годы в развитых странах быстрыми темпами растет выпуск копченой продукции из лосося искусственного выращивания.

При производстве продукции холодного копчения обычно исполь­зуют жирное сырье, подвергая его разделке на филе, которое солят вкусовым посолом до содержания соли в мясе рыбы не более 4%. Обработка рыбы дымо-воздушной смесью обычно кратковременная, так что потери влаги при копчении не превышают 3-5% от массы продукта. Для придания продукту приятного колера нередко исполь­зуют красители растительного происхождения - аннато и кроцин.

Из лососевых рыб искусственного разведения в последние годы в больших количествах вырабатывается балычная продукция. Преимущественным спросом на рынках сбыта пользуется слегка подкопченная продукция с отчетливо выраженным вкусом и запахом лососевых рыб, облагороженным слабым ароматом копчености. Лососевых рыб перед копчением разделывают на бобовники. Посол их осуществляют обычно сухой солью. Копчение проводят при тем­пературе не выше 28°С в течение нескольких часов таким образом, чтобы потери влаги не превышали 7%; отдельные предприятия коптят лосося до снижения массовой доли влаги всего на 1-2%. После копчения бобовники упаковывают в усадочную пленку или обесшкуривают, нарезают ломтиками и упаковывают под вакуумом.

При производстве балычной продукции на предприятиях соблюда­ются строгие санитарно-гигиенические требования, касающиеся обя­зательной изоляции производственных участков приема сырья, его разделки, копчения и др. Переходы между участками оборудуют де­зинфекционными тамбурами, воздух в рабочей зоне кондиционируют и температуру его поддерживают около 8°С. Рабочие, занятые в производственном процессе, выполняют работу в резиновых перчат­ках и марлевых повязках.

При производстве продукции холодного копчения из океаничес­ких рыб, таких как скумбрия, сардина и др., неред­ко прибегают к облагораживанию вкуса копченой продукции за счет выдерживания соленого полуфабриката в смеси с добавками вкусо-ароматических веществ и фруктов.

Широкое распространение в последние годы получил способ полугорячего копчения. По этому способу копчение рыбы ве­дется по ступенчатому режиму, предусматривающему постепенное повышение температуры дымо-воздушной смеси. В ряде стран конеч­ная температура в толще рыбы при этом регламентирована в пределах 65-82°С.

Производство продукции горячего копчения из сельди издавна существовало в Германии, Англии и других странах. Ассортимент этой продукции, вырабатываемой в последние годы европейскими фирмами, отличается большим разнообразием. Сельдь как сырье для выпуска копченых продуктов стала успешно использовать рыб­ная промышленность Болгарии. Некоторые зарубежные фирмы с конца 80-х годов наладили выпуск порционных завтраков из копченой рыбы.

Вся эта продукция, особенно вырабатываемая из жирного сырья, пользуется высоким потребительским спросом. Это объясняется не только ее высокими вкусовыми качествами, но и увеличением внимания потребителя к рыбе как продукту здоровья, содержащему жизненно необходимые организму человека омега-3 и омега-6 жир­ные кислоты. Хотя в последние годы за рубежом налажено производ­ство препаратов омега-3 жирных кислот, по эффективности действия они уступают рыбным продуктам.

Высокое качество копченой рыбной продукции, вырабатываемой зарубежной рыбной промышленностью, объясняется не только внед­рением новых технологий, но и созданием нового типа коптильных предприятий, оснащенных ультрасовременной техникой. В техноло­гии копчения широко используются на всех операциях микропроцес­соры; современные коптильные установки оборудованы также устройствами для автоматической очистки оборудования. Даже небольшие коптильные установки производительностью до 2 т оснащены микропроцессорами с закладкой 99 программ. Они идеаль­но приспособлены для копчения филе, кипперсов, горячего копчения шпрота и др.[2, c. 17]


1. Химический и микробиологический состав, пищевая ценность

1.1 Химический состав


Для установления пищевой и питательной ценности рыбы, в ней, помимо органолептической оценки, обыкновенно определяют общий химический состав мяса или других органов тела, выражае­мый в виде содержания таких основных органических или мине­ральных соединений, как влага, протеины (белки), жиры и мине­ральные (зольные) вещества.

По химическому составу можно судить и о калорийности мяса рыбы, под которой понимается количество тепла, выделяемого в организме человека или животного при окислении белков, жиров и углеводов, входящих в состав растительной или животной пищи Калорийность выражается в больших калориях, определяющих ко­личество теплоты, выделяемой 1 литром воды при нагревании ее на 1°С.

Установлено, что при окислении этих веществ в организме человека выделяется:


1 граммом белков 4,1 кал

1 граммом углеводов 4,1 кал

1 граммом жиров 9,3 кал [6, 24 c.]


Отсюда ясно, что наибольшей калорийностью обладает мясо жирной и наименьшей — мясо тощей рыбы. Так как углеводов в мясе рыбы очень мало и притом они быстро разрушаются в период посмертного состояния рыбы, переходя в молочную кислоту и да­лее образуя другие соединения, то им не придают практического значения при определении калорийности рыбы. Отсюда и при опре­делении химического состава мяса рыбы углеводы обыкновенно не учитываются.

Химический состав рыбы весьма сильно изменяется в зависи­мости от семейства, рода и вида, возраста, пола, времени улова, а также кормности водоема, условий окружающей среды.

Но все же колебания в содержании органических и неоргани­ческих веществ в рыбе находятся в известных пределах. Содержа­ние протеинов и минеральных веществ в мясе рыбы сравнительно устойчиво, а содержание влаги и жира резко колеблется.

Химический состав разных частей и органов тела рыбы неоди­наков. Поэтому суммарный химический состав любой рыбы в це­лом виде во многих случаях не дает ясного представления о пище­вой ценности мяса рыбы. Чаще всего, помимо органолептических признаков, пищевая ценность мяса рыбы определяется при помощи химического анализа только одного мяса рыбы, освобожденного даже и от кожи — в крупных экземплярах или вместе с кожей — в та­ких мелких рыбках, как хамса, килька, тюлька.

При решении технологических задач в первую очередь важно знать о химическом составе съедобной части тела рыбы, в состав которой входит мясо, икра, молоки, печень и во вторую — несъедобной части: внутренности, головы и прочие отходы, которые могут быть использованы на приготовление кормовых, технических, а частично и пищевых продуктов. [4, c. 22]

Показатели минимум и максимум (в %) содержания основ­ных веществ в мышцах (мясе) наших основных промысловых рыб показан в таблице 1.


Таблица 1.

Показатель

Минимум

Максимум

Влага

48

85,1

Протеины (белки)

10,3

24,4

Жиры

0,1

54

Минеральные вещества

0,5

5,6


Такой разброс объясняется тем, что в рыбе в зависимости от разного возраста, пола, стадии зрелости, разного физического состояния, может изменяться химический и весовой состав.

Химический состав некоторых копченых рыб показан в табл. 2 [11, 110 c.]


1.2 Микробиологический состав.


При холодном копчении рыбы микроорганизмы уничтожаются главным образом в результате обезвоживания тканей при посо­ле. Антисептические вещества, содержащиеся в коптильном дыму или в коптильной жидкости (фенолы, формальдегиды, эфиры и другие вещества) губительно действуют на микроор­ганизмы.

При горячем копчении рыбы стерилизующим фактором явля­ется высокая температура. Скорость отмирания бактерий зависит от температуры и густоты коптильного дыма. Так, стафилококки и палочка протея погибают в течение 3 ч, споровые гнилостные в течение 7 ч. Микрофлора готовой продукции зависит от ка­чества сырья, полуфабриката и санитарных условий производ­ства.


Таблица 2

Рыба горячего копчения

Вода

белки

жиры

зола

Na

K

Ca

Mg

P

Fe

A

B1

B2

PPC

Энергетическая ценность

Окунь морской, крупный

64,8

23,9

9

3,7

-

324

63

23

2,5

0,6

-

-

-

-

-

Треска потрошеная, без головы

69,4

26,0

1,2

2,7

560

310

65

50

230

1,7

0,01

0,11

0,17

0,95

115

Рыба горячего копчения

Скумбрия атлантическая

60,5

15,1

8,9

10,5

-

128

80

48

-

0,8

0,02

0,12

0,18

2,9

150


Содержание соли в отмоченном полуфабрикате должно быть 6-8% во избежание развития гнилостной микрофлоры, в том числе бактерий группы кишечной палочки. Чрезмерно отмоченный полуфабрикат может явиться благоприятной средой для разви­тия микробов. Обсемененность соленого полуфабриката может увеличиться при накалывании его на шомпола, поэтому перед накалыванием рыбы их необходимо тщательно промывать и дезин­фицировать. В 1 г сельди, содержащей до отмочки 10-12% хло­ристого натрия, обнаруживается 103-105, после oтмочки — 103-104 микробов.

Обсеменепность рыбы холодного копчения колеблются от 102 до 104 микробов в, в том числе 102 в 30%, 103 в 60% и 104 в 1 г — в 10% исследованных образцов. Кишечная палочка обна­руживается в 30% исследованных образцов, преобладающий коли-титр> 11,1. Микрофлора копченой сельди в основном кокковая (80-90% образцов), кроме кокковых обнаруживаются спо­ровые и бесспоровые палочки.

При холодном копчении (30-35° С) погибает 47% первона­чального количества микробов.

Спинка, теша осетра и кета холодного копчения имеют обсемененность 104-105 бактерий в 1 г, коли-татр> 11,1, бок белужий и теша, у которых поверхность мяса, соприкасающаяся с окру­жающей средой больше, содержат 104-105 и более микроорганиз­мов в 1 г, коли-татр 4,3-0,4.

Большая влажность воздуха в помещении, где хранится коп­ченая рыба, способствует росту плесневых грибов, что приводит к потере товарного вида и порче продукта. Копченая сельдь или нарезанные балычные изделия могут быть защищены от вторич­ного загрязнения и от плесневения в условиях высокой влажно­сти воздуха путем упаковки в полимерные пленки. Так, при хра­нении сельди, упакованной в пакеты из полимерной пленки, при 5-7° С в течение 90 дней обсемененность колебалась от 102 до 103 бактерий в 1 г мышечной ткани. Титр бактерии группы ки­шечной палочки был более 11,1 сельди во всех видах упаковки Палочка протея не была обнаружена. Исследования показали, что общая микробная обсемененность мышечной ткани сельди в любой упаковке (полиэтилен, полиэтилен-целлофан, ящики, выст­ланные пергаментом) была одинаковой. Сельдь, упакованная в полиэтиленовую пленку, содержала меньше плесени, чем сельдь в какой-либо другой упаковке.

На микробную обсемененность сельди влияет также темпера­тура хранения. Исследования показали, что атлантическая сельдь холодного копчения может храниться в полиэтиленовой упаковке при температуре около 0°'С до двух месяцев, а при температуре 5-7° С до одного месяца. Обсемененность мышечной ткани при этом колеблется от 101 до 102 микробов в 1 г. Коли-титр>11,1. Палочка протея и анаэробы в 10 г образца не обнаруживаются.

При хранении порционированнои спинки осетра и кеты холод­ного копчения (l50 г) в пакетах из полиэтилена при 6-7° С ми­кробная обсемененность остается без изменения, в то время как в контрольных образцах (упаковка в пергаментную бумагу) она увеличивается в несколько раз за 120 ч хранения. В балычных из­делиях обнаруживается палочка протея (10% исследованных об­разцов кеты и 20% образцов бока белужьего).

Было установлено, что при хранении слабосоленых и копченых рыбных продуктов в полимерных пакетах при 0°С и 6° С общая обсемененность снижается во всех образцах, за исключением ба­лыков угольной рыбы. Микрофлора соленой сельди бывает пред­ставлена кокками (воздушная флора) и единичными колониями белого непатогенного стафилококка, соленой горбуши — кокками, белым непатогенньгм стафилококком и .вульгарным протеем. В балыках угольной рыбы обнаруживается кишечная палоч­ка.

При горячем копчении рыба подвергается воздействию высокой температуры (90-110° С) в течение 30-40 мин, в результате по­гибает 99% первоначального количества микробов. Обсеменен­ность мышечной ткани рыбы горячего копчения составляет '102-104 микробов в 1 г/ в Т9М числе 102 - в 83%, 103 в 15% и 104 в 1 г — в 2% исследованных образцов. При исследовании 286 об­разцов кишечная палочка не была обнаружена в 10 г. Палочка протея также отсутствовала.

Рыба горячего копчения имеет большую влажность, чем рыба холодного копчения, и содержит до 3% хлористого натрия, поэто­му она более подвержена воздействию гнилостных бактерий при нарушении санитарных условий упаковки и последующего хра­нения.

По данным зарубежных авторов Cl botulinum типа Е обнаруживают в копченой рыбе, упакованной под вакуумом и без него. По данным Л. Христиансена, в рыбе, зараженной спорами ботулинуса, после копчения при 82,8° С в течение 30 мин вакуумной упаковки в пакеты и хранения при комнатной температуре жизнеспособные споры сохранялись в течение 7 суток Уста­новлено, что количество спор в рыбе не зависит от содержания в ней влаги, а трехпроцентная концентрация хлористого натрия сдерживает образование токсина.

Токсин образовывается в копченой рыбе при температуре 10° С в течение пяти суток без изменения ее качества Установлено, что поврежденные при нагреве или нагретые в присутствия коптильных компонентов споры более чувствительны к неблагоприятным условиям, рН среды и концентрации хлористого натрия, чем не нагретые споры.

Обсеменённость копченой рыбы зависит от санитарного состоя­ния помещения и оборудования. Емкости для отмочки соленой или для посола свежей рыбы необходимо исследовать путем смы­вов не реже 1 раза в месяц. В смывах с оборудования, инвентаря и тары, соприкасающихся с сырьем, можно определять только на­личие кишечной палочки и палочки протея. Столы для упаковки, ящики, перчатки и руки рабочих, занятых упаковкой готовой про­дукции, надо исследовать на общую обсемененность, наличие бак­терий группы кишечной палочки и палочки протея, уборочное от­деление и камеры для хранения копченой рыбы — на наличие плесени в воздухе и на стенах. Металлические и деревянные ящи­ки для упаковки рыбы следует проверять на наличие плесени, так как рыба холодного копчения хранится до трех месяцев. При не­благоприятных санитарных условиях на ее поверхности может развиваться плесень, иногда проникающая в мышечную ткань. [5,c. 54]

2. Процессы идущие в копченых рыбных товарах при их хранении.


2.1 Принципы и способы хранения.

Способы хранения рыбы и рыбных продуктов почти целиком основываются на принципах обработки рыбы в целях ее консервирования.

Все биологические принципы консервирования — биоз, анабиоз, ценоанабиоз и абиоз — имеют прямое или косвенное отношение к принципам хранения рыбы и рыбных продуктов. Например, на принципе истинного биоза (или аубиоза) основаны содержание и перевоз­ка живой рыбы.

Не только способы консервирования, но и способы хранения часто основываются на сочетании нескольких биологических - принципов, но один из них является основным.

Принцип анабиоза, или замедленной скрытой жизни, является основным при хранении рыбной продукции. Он основан на подавлении деятельности тканевых фермен­тов и микроорганизмов способом охлаждения до опре­деленной температуры (криоанабиоз), на сохранении до­стигнутой при обработке степени обезвоживания продук­та (ксероанабноз), на сохранении созданного при обра­ботке высокого осмотического давления в клеточном соке (осмоанабиоз).

Принцип ценоанабиоза имеет немалое значение при хранении (созревании), например, пресервов, в отноше­нии которых действует не только принцип осмоанабиоза (посол), но и ценоанабиоза, так как в этих продуктах развиваются и действуют молочнокислые бактерии. Та­кой ценоанабиоз имеет детализованное наименование ацндоценоанабиоза. [3, c. 87]


2.2 Биохимические и физические процессы.

Нежная структура ткани, неустойчивая белковая система, нестойкий в хранении жир — все это в значи­тельной мере объясняет, почему рыбные продукты являются наиболее нестойкими при хранении.

Во избежание окислительной порчи тканевого жира и денатурации белка рыба нуждается в самых надеж­ных температурных режимах замораживания и хране­ния. Без этого длительное хранение ее с удовлетворительными результатами невозможно.

Изменения жира при хранении рыбы и рыбных про­дуктов в основном обусловлены биохимическими и хи­мическими процессами — окислением и гидролизом. В зависимости от условий преобладает один из этих про­цессов или оба протекают одновременно, причем оба вполне выражены.

Тканевый жир рыб легко подвергается гидролитическому расщеплению из-за прямого контакта жира, во­ды и липазы (активного жирорасщепляющего фермен­та). Окисление жира возникает также легко и быстро в результате его соприкосновения с кислородом воздуха или тканей.

Кислород растворяется в жире и окисляет его. При этом в жире появляются новые вещества, природа и соотношение которых зависят от свойств жира и усло­вий окисления. Условия окисления в свою очередь определяют его направление в глубину.

Интенсивность окисления жиров определяется сте­пенью их непредельности, количеством и составом высо­коненасыщенных кислот, а также присутствием анти­окислителей (естественных или внесенных при обработке рыбы).

Скорость окисления жиров непостоянна, на началь­ном этапе она возрастает, затем уменьшается.

При хранении мороженой рыбы липиды могут спо­собствовать предотвращению денатурации актомиозина — наиболее стабильного белкового компонента. Обра­зование же и накопление свободных жирных кислот влекут за собой не только ухудшение цвета, запаха и вкуса продукта, зависящее непосредственно от окисли­тельной порчи жира, но и способствуют денатурации белка.

Почти у всех океанических рыб наблюдаются ускоренные окисление и гидролиз белков.

При копче­нии мясо рыбы пропитывается летучими ароматически­ми веществами, выделяющимися при неполном сгорании дерева (органические кислоты, спирты, карбонильные соединения и фенолы), которые придают дыму бактери­цидные свойства.

Рыба горячего и холодного копчения — это совсем разные продукты, хотя они и объединяется под общим понятием копченой рыбы.

В копченых рыбных продуктах процесс окисления тканевого жира под влиянием сильного антиокислитель­ного воздействия продуктов сгорания древесины прак­тически приостанавливается или резко замедляется. По этому в копченых продуктах окислительная порча жира обычно связана с качественным состоянием поступившей на копчение мороженой или соленой рыбы.

Рыба холодного копчения как продукт с большой концентрацией соли в клеточном соке, обезвоженный (подсушенный) и хорошо обработанный продуктами сгорания древесины, имеющими консервирующее действие, довольно стоек в хранении.

Рыба горячего копчения — продукт из группы особо нестойких в хранении, лишь немногий более стойкий, чем, например, рыба кулинарной тепловой обработки. Ткани рыбы горячего копчения не подвергаются при хранении ферментативным процессам, так как ферменты в результате воздействия высоких температур разрушаются еще до направления продукта на хранение. Совсем незначительная часть копченой рыбы представлена продукцией полугорячего копчения — промежуточных между рыбой холодного и горячего копчения свойств, в том числе и по стойкости в хранении. [7, c. 126]


Случайные файлы

Файл
36577.rtf
38216.doc
TRIG.DOC
69965.rtf
43234.rtf