Детекторная система ЭКТ (63917)

Посмотреть архив целиком














Детекторная система ЭКТ


Важнейшими частями детекторной системы являются собственно детектор, куда входят сцинтиллирующий кристалл, световоды, ФЭУ, а также различные аналоговые узлы, из которых наиболее ответственными можно считать резисторные координатные матрицы и узлы ФЭУ. При их проектировании применяют вероятностный подход и методы оптимизации по различным критериям. Эти методы достаточно сложны. Значительное место в этой книге занимает анализ влияния различных физических факторов: взаимодействия -квантов с кристаллом сцинтиллятора, оптические явления в кристалле и световодах и др. Обсуждение эти вопросов требует специальной подготовки. Поэтому здесь в основном рассматривается преобразование различных сигналов на уровне структурных и электрических схем, а также фрагменты конструкций. Кроме основных узлов, показанных в структурной схеме рис.129, будут рассмотрены также некоторые устройства, обусловленные спецификой сцинтилляционных детекторов.

Электрическое преобразование сигналов начинается с фотоэлектронных умножителей (ФЭУ). Их большое количество предъявляет повышенные требования к их идентичности и стабильности параметров. Но даже после их тщательного отбора в процессе работы параметры и характеристики ФЭУ могут меняться, поэтому необходима периодическая коррекция их режима, которая производится автоматически.

Важнейшим параметром ФЭУ является его коэффициент усиления. Он представляет собой отношение токов анода и фотокатода и определяется формулой


,


где m – количество динодов,

i – коэффициент вторичной эмиссии i-го динода,

i – коэффициент собирания.

Считая i одинаковыми и i = 1, получим M = m. Обычно в детекторах гамма-камер применяют ФЭУ с числом динодов, равным 8. При  = 3 – 4 коэффициент усиления ФЭУ будет составлять около 50000. Коэффициент усиления можно регулировать, изменяя напряжение на катоде ФЭУ или между отдельными динодами. При этом изменяется коэффициент вторичной эмиссии динодов. Вначале, с ростом напряжения между соседними динодами, он увеличивается, а затем достигает максимума и начинает уменьшаться. Однако это происходит при очень больших напряжениях, которые не используются на практике. Такой способ управления режимом ФЭУ применен в схеме, приведенной на рис.1. На этой схеме показан также предварительный усилитель выходных сигналов ФЭУ.

Регулирование коэффициента усиления ФЭУ осуществляется путем изменения напряжения между динодами Д5 – Д7. Для этого от ЦАП на управляющий транзистор VT5 подается напряжение, которое устанавливает ток транзисторов VT1, VT2, VT5 (имеются в виду токи коллекторов, которые практически равны между собой). Транзистор VT5 включен по схеме ОБ, и поэтому его ток пропорционален управляющему напряжению ЦАП: I5 =Uцап/R6. Так как потенциал динода Д5 может быть достаточно большим (по абсолютной величине), применяется последовательное включение относительно низковольтных транзисторов VT1 и VT2.



Рисунок 1. Узел ФЭУ детекторной системы


Сопротивления резисторов делителя ФЭУ обычно берутся достаточно высокоомными (0,5 – 1 Мом). Однако ток делителя должен быть сравнимым (или больше) с током анода. Сопротивления резисторов R7 и R8 сравнительно невелики (около 10 кОм), поэтому потенциалы динодов Д7 и Д8 практически равны питающим напряжениям UД7 и UД8 .

Выясним, как зависит от управляющего тока I5 потенциал точки а, т.е. динода Д12 Для этого воспользуемся эквивалентной схемой, изображенной на рис.2. Здесь RД1 и RД2 – соответственно суммарные сопротивления делителя выше и ниже точки а. Токами динодов пренебрегаем.


Рисунок 2. Эквивалентная схема для расчета потенциала точки а.


Из уравнений I1 - I2 = I5 RД1I1 + RД2I2 = Ек и находим


и Ua .






Рисунок 3. Форма

импульса выходного сигнала ФЭУ.





Для оценки диапазона регулирования Ua положим ЕК = 1000 В, RД1 = 4 МОм, RД2 = 2 МОм. Ua будет равно нулю при управляющем токе I5 = 170 мкА. В среднем напряжения между динодами устанавливают около 100 В. Следовательно, потенциалы динодов Д7 и Д8 будут равными соответственно –200 и –100 В. Регулируя потенциал точки а от – 300 до – 210 В, изменяют коэффициент усиления ФЭУ в 1,5 – 2 раза. Если же его повысить до – 200 В, то напряжение между динодами Д6 и Д7 станет равным нулю, и ФЭУ закроется (небольшой ток все же будет протекать). Средний по системе коэффициент усиления ФЭУ регулируют, изменяя напряжение источника Ек , общего для всех ФЭУ.

Сигнал ФЭУ усиливается предварительным усилителем на быстродействующем операционном усилителе и транзисторах VT3 и VT4. Выходное напряжение ОУ равно R1iа. Типичная форма импульса этого напряжения показана на рис.3. Усилитель имеет два выхода – беспороговый и пороговый. Беспороговый выход используют для формирования результирующего энергетического сигнала Z , а пороговый – для получения координатных сигналов X и Y. Практика показала, что при очень слабых сигналах, а это обычно сигналы ФЭУ, расположенных далеко от вспышки, их вклады в общий координатный сигнал приобретают характер флуктуаций и только ухудшают пространственное разрешение. Кроме того, применение порога позволяет уменьшить длительность импульсов (см. рис.3) и вероятность их наложения. Конденсатор С1 служит для сглаживания импульсных помех, а С2, С3 – для отделения импульсного сигнала от постоянной составляющей.

Порог задают с помощью транзисторов VT3 и VT4, причем VT3 включен как диод, а VT4 играет роль управляемого источника тока I0. Ток диода VT3 равен разности IОУ и I0. До тех пор, пока выходной ток ОУ меньше I0 , диод VT4 открыт, и напряжение на пороговом выходе отсутствует. Когда IОУ становится равным I0, диод начинает закрываться, и на пороговом выходе появляется импульс. Величина порога определяется из соотношений IОУ = I0 и IОУ = (UОУ – Uд)/R2. Полагая UОУ = Uпор , находим Uпор = RI0 + Uд .

Все элементы схемы рис.1 размещают на маленьких круглых платах (обычно их две), которые располагаются на цоколе ФЭУ. Этим достигается уменьшение числа соединительных проводников и снижение помех.

Импульсы напряжения с выходов предварительного усилителя через резисторные матрицы поступают на сумматоры энергетических и координатных сигналов. Причем, к беспороговому выходу подключают по одному резистору с одинаковыми сопротивлениями, а к пороговому – четыре, с разными (весовыми) сопротивлениями (рис.4). Еще раз обратимся к рис.1. Нетрудно догадаться, что сопротивления резисторов убывают от левого края матрицы ФЭУ к правому, а сопротивления резисторов, наоборот, возрастают. Причем, сопротивления и у ФЭУ, расположенных симметрично относительно оси Y, будут одинаковыми. Аналогично обстоит дело и с резисторами и . Расчет и проектирование координатных резисторных матриц является сложной и ответственной задачей, так как от ее решения в большой степени зависит качество изображения. Заметим еще, что использование амплитудно-селектированных сигналов для определения координат обусловливает другой способ энергетической коррекции кооринатных сигналов.









Рисунок 4. Связи ФЭУ с резисторными матрицами.





В этом случае будет логичным делить координатные сигналы X = X+ – X и Y = Y+– Y на суммы их составляющих:


и (1)


При этом, кроме компенсации энергозависимости координатных сигналов, будут компенсироваться и погрешности за счет разброса резисторов координатной матрицы.

Представим координатные сигналы в виде сумм


; ; ; , (2)


где N – число ФЭУ, ui - выходной (пороговый) сигнал i-го ФЭУ. Этот сигнал можно записать как ui = iE, где Е – энергия -кванта , вызвавшего сцинтилляцию. Коэффициент i в основном зависит от расстояния центра ФЭУ до места вспышки, а также от индивидуальных параметров ФЭУ. В принципе, его величина для определенных точек (тестовых, или реперных) может быть рассчитана. Подставляя в формулы (1) суммы (2), получим


; . (3)


Как видно из формул (3), энергетическая зависимость координатных сигналов исключена. Теперь они в основном зависят от геометрических констант и электрических параметров (сопротивлений матриц и масштабных коэффициентов делителей). Кроме того, как уже отмечалось выше, погрешности в их вычисление вносит дискретность фотоприемников.

Если известны весовые коэффициенты ai , bi , то сопротивления координатной матрицы определяются по формулам


; ; ; , (4)


здесь R0 – сопротивление резистора в цепи обратной связи сумматора.

Наиболее простой способ определения весовых коэффициентов состоит в линейной аппроксимации их зависимости от координат. Рассмотрим, как это делается на примере группы ФЭУ, расположенных на оси X матрицы, состоящей из 19 ФЭУ (см. рис.3). Эта группа изображена на рис 5 Коэффициент а+ изменяется слева направо от нуля до единицы, а коэффициент а наоборот – от единицы до нуля. Это значит, что левый крайний ФЭУ (3) не вносит никакого вклада в координатный сигнал Х+, а правый крайний (4) – в Х. Весовой коэффициент ФЭУ, расположенного в центре (1), равен 0,12 Поэтому его вклады в сигналы Х+ и Хбудут одинаковыми и при их вычитании они компенсируются.


Случайные файлы

Файл
18592.rtf
166335.rtf
102.rtf
ГОСТ 18980-90.doc
27200-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.