Багатопроменева інтерференція (63882)

Посмотреть архив целиком

Багатопромінева інтерференція


Клиновиднiсть пластини впливає на контраст інтерференційних кілець рівного нахилу. Критичний кут клина, при якому виникає розмиття, визначають за формулою


кр = /(2nl),


де l – довжина джерела.

Для одержання досить контрастної інтерференційної картини реальний кут клина необхідно зменшити в порівнянні з критичним, наприклад, у 2 рази. Розрахунки показують, що при l = 10 мм і n = 1,5  = 4».


Рисунок 1 – Інтерференційна схема для одержання смуг рівної товщини


Смуги рівної товщини зручно спостерігати в клині на установці, що представляє собою інтерферометр Физо (рис. 1, а). Джерело світла 1 висвітлює діафрагму 2 з маленьким отвором. Діафрагма розташована у фокальній площині колиматорної лінзи 3.

У результаті на клинчасту пластину 4 падає досить рівнобіжний пучок променів, що після розподілу на першій поверхні утворить у відбитому світлі два інтерферуючих пучки променів. За допомогою допоміжного напівпрозорого дзеркала 5 інтерферуючі пучки відводяться убік, утворити у фокальній площині лінзи двох зображень 2' і 2» вихідної діафрагми. Око спостерігача, розташоване у цій фокальній площині, при перекритті зіницею зазначених зображень точкової діафрагми побачить через лінзу 3, як крізь лупу, інтерференційну картину у формі прямолінійних і рівновіддалених смуг, рівнобіжних ребру клина (рис. 1, б). Ширину інтерференційних смуг з урахуванням подвійного ходу променів у клині знаходять за формулою


d = /(2n).


Вимога до просторової когерентності джерела накладає обмеження на розмір діафрагми. Відповідно до формули кутовий радіус діафрагми не повинен перевищувати 0,5 .

Необхідно зазначити, що форма не є відмінною ознакою типу інтерференційних смуг: смуги обох типів можуть бути як кільцевими, так і прямолінійними. Важливою відмінною ознакою є місце локалізації смуг; для першого типу – нескінченність, для другого – одна з поверхонь пластини (для нормального падіння променів). Це викликає розбіжність у способах реєстрації інтерференційної картини.

Смуги рівної товщини і нахилу можна одержати в інтерферометрі Майкельсона, що відіграв велику роль в історії розвитку фізики. Прилад включає наступні основні оптичні елементи (рис. 2): джерело світла 1, перший (освітлювальний) коліматор, що складається з діафрагми 2, яка розташована у фокальній площині лінзи 3, розділеної пластини 7, двох кінцевих дзеркал 5 і 8, другого (спостережливого) коліматора з лінзою 9, що дає у фокальній площині два зображення 2' і 2» діафрагми 2.

Вихідний з освітлювального коліматора пучок променів розділяється на пластині 7 на два. Обидва пучки після відображення від кінцевих дзеркал йдуть у зворотному напрямку і, з'єднуючись на пластині в один пучок, інтерферують між собою.



Рисунок 3 – Схема інтерферометра Майкельсона


Оптична схема інтерферометра Майкельсона приводиться до повітряної пластини, однією поверхнею якої служить, наприклад, дзеркало 8, а інший – уявне зображення 5' від дзеркала 5, отримане через пластину 7. Товщина і клиновидність повітряної пластини змінюється за рахунок нахилу і зрушення дзеркал. Для спостереження смуг рівної товщини, що локалізовані на поверхні одного з дзеркал, око повинно бути у фокальній площині лінзи 9, що відіграє роль лупи. Попередньо дзеркала 5 і 8 встановлюються перпендикулярно падаючим променям за допомогою змінного окуляра 10.

Ознакою правильного положення дзеркал є наявність у центрі поля окуляра двох з'єднаних зображень 2' і 2». Для спостереження смуг рівного нахилу вводиться додаткова лінза 4, що створює пучок променів, що сходиться, для висвітлення повітряної пластини променями різних нахилів. Тому що інтерференційна картина кілець рівного нахилу локалізована в нескінченності, то перед оком відноситься окуляр (лінза 10). Для спостереження інтерференції в білому світлі необхідно використовувати компенсаційну пластину 6, що зрівнює оптичну довжину шляху променів різних довжин хвиль у склі для обох областей інтерферометра. Завдяки порівняльній простоті й універсальності інтерферометр Майкельсона з тими чи іншими видозмінами знайшов широке застосування.


Рисунок 4 – Контур інтерференційних смуг при багатопроменевій інтерференції: а- у минулому світлі; б- у відбитому світлі


Розглянемо пучок рівнобіжних променів, що падає під невеликим кутом на плоскопаралельну пластину, у якому поверхні мають однакові і порівняно високі коефіцієнти відображення , а поглинання світла на поверхнях і в матеріалі пластини відсутні ( = 0,  +  = 1).

Поділ амплітуди падаючої хвилі послідовно на кожній поверхні пластини призводить до утворення багатьох променів як у відбитому, так і в минаючому світлі (див. рис. 4), інтенсивності яких поступово убувають за законом геометричної прогресії при постійній різниці фаз сусідніх інтерферуючих променів  = (4/) dn cos '.

Для сумарних коефіцієнтів пропущення  і відображення  відомі такі залежності (формули Эйри):


; (1)


, (2)


де параметр F = 4/(1 – )2 характеризує різкість інтерференційних смуг.

З графічного представлення цих залежностей видно, що інтерференційна картина в минулому світлі (рис. 4, а) має вид вузьких світлих смуг на темному тлі, а у відбитому світлі (рис. 4, б) – темних вузьких смуг на майже рівномірному світлому фоні.

Оцінимо напівширину інтерференційного максимуму в минаючому світлі. Очевидно, що ()max = 0,5 буде при F sin2 (/2) = 1, де  = 2 ± /2. З огляду на малість аргументу , одержимо  = 4/.

За різкість інтерференційних смуг Q приймають відношення


Q = / = (/2) = . (3)


Аналіз показує, що різкість інтерференційних смуг і їхній контраст збільшуються при зростанні коефіцієнта відображення. Якщо при двопроменевій інтерференції Q  2, то при багатопроменевій інтерференції ( = 0,9) Q  30, і різкість можна ще збільшити при  > 0,9.

Для наочності представлення багатопроменевої інтерференції в пластині різкість Q прийнята ототожнювати з числом ефективно iнтерферуючих променів, розуміючи під цим число однаково інтенсивних променів, що дають екстремум тієї ж напівширини, що і нескінченно велике число променів спадної інтенсивності.

Багатопроменева інтерференція в клинчастій пластині призводить до одержання різких смуг рівної товщини, локалізованих на її поверхні; при цьому відбувається деяке порушення симетрії смуг і зменшення інтенсивності в максимумі. Наявність поглинання при багатопроменевій інтерференції істотно позначається на інтенсивності минулого світла. Наприклад, збільшення поглинання на 2% ( = 0,9, 1 = 0,03 і 2 = 0,05) призводить до зменшення пропущення в максимумі в 2 рази.

Важливим практичним застосуванням інтерференції варто вважати просвітлюючі покриття, діелектричні дзеркала і світлофільтри.

При нормальному падінні світла на поверхню скла (n = 1.5 у видимій області спектра) коефіцієнт відображення , обумовлений відомою формулою Френеля, складає 4% і росте зі збільшенням n. Наприклад, для германію в інфрачервоній області спектра n = 4 i  = 36%. В оптичних системах, що нараховує десятки поверхонь, відображення приводить до значних світлових утрат, що негативно позначаються на якості зображення, збільшуючи частку розсіяного світла.

З метою зменшення відбитого світла від заломлюючих поверхонь оптичних деталей на них тим чи іншим технологічним спосіб, наприклад нанесенням у вакуумі, формують тонкі прозорі шари, що одержали назву що просвітлюють. Найбільше часто використовують одношарові і двошарові покриття, що просвітлюють, однак у ряді випадків застосовують три і більше шарів.

Розглянемо відображення світла від одного шару (рис. 5, а), утвореного на поверхні оптичної деталі (підбивки). Очевидно, що взаємне гасіння в результаті інтерференції двох відбитих променів з амплітудами А1 і А2 відбудеться при виконанні двох умов (рис. 5, б); 1) рівності амплітуд А2 = А2; 2) зрушення фаз на , тобто при різниці в напівхвилю ходу променів. З першої умови знаходять показник переломлення шару . Друга умова дозволяє визначити мінімальну товщину шару, що просвітлює, d = /(4n2).

Перша умова не завжди вдається точно витримати унаслідок відсутності матеріалів з необхідними показниками переломлення. Наприклад, для скла з крона (n3 = 1,52) n  1,23, але на практиці використовують шар з n2 = 1,45. Це призводить до зниження відображення з 4,2% лише до 2,6%. Той же шар, але на склі типу флінт (n3 = 1,72) дозволяє більш істотно знизити коефіцієнт відображення (з 7% до 1 ).



Рисунок 5 – Одношарове просвітління: а – конструктивна схема; б – векторна діаграма


Рисунок 6 – Криві ефективності просвітління з різним числом N шарів


Двошарове просвітління дозволяє цілком усунути відображення світла від поверхні оптичної деталі незалежно від її показника переломлення. Однак значення  = 0 досягається лише у вузькому спектральному інтервалі, а для довжин хвиль, що значно відрізняються від розрахункової, значення  можуть перевищувати вихідне значення коефіцієнта відображення для непросвітленої поверхні.

При тришаровому просвітлінні досягається значне зниження відображення в широкій області спектра. На рис. 6 наведені спектральні криві коефіцієнта відображення для порівняння ефективності покрить, що просвітлює, з різним числом шарів.


Случайные файлы

Файл
1538.rtf
124743.rtf
fer-m_08.doc
103917.rtf
150138.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.