Электронные пушки с большим пространственным зарядом (63413)

Посмотреть архив целиком

Белорусский государственный университет информатики и радиоэлектроники


Кафедра электронной техники и технологии







РЕФЕРАТ

На тему:

«Электронные пушки с большим пространственным зарядом»















МИНСК, 2008


Для формирования интенсивных осесимметричных электронных пучков широко используются электронные пушки с большим пространственным зарядом () (пушки Пирса).

Преимущества:

  1. Форма электродов поддается оценочному расчету.

  2. Имеется возможность формировать пучки с достаточно большим первеансом (несколько мк ).

  3. Сравнительная простота конструкции.


Электронная система такой пушки состоит: из катода, прикатодного фокусирующего электрода и анода. Фокусирующий электрод (ФЭ) находится под потенциалом катода, а анод имеет положительный потенциал (несколько десятков кВ) относительно катода и ФЭ. Для формирования параллельного пучка катод должен иметь плоскую форму, а фокусирующий электрод – форму усеченного конуса. Анод может быть плоским диском с отверстием либо иметь выпуклую, в сторону катода, форму в соответствии с одной из форм эквипотенциальных поверхностей. Эквипотенциальные поверхности имеют сложную форму, и изготовление электродов в соответствии с точной конфигурацией электрических полей затруднительно. Для формирования пучка решающее значение имеет распределение потенциала у его границы. Изменение формы электродов вдали от электронного потока мало сказывается на распределении потенциала вдоль его границы. Практически достаточно выдержать необходимое распределение потенциала на расстоянии одного полутора диаметров пучка от его границы. При конструировании пушки можно выбирать упрощенную форму электродов, обеспечивающую необходимое распределение потенциала вблизи границы пучка. Вдали от границы форму электродов выбирают исходя из конструктивных соображений: простоты изготовления, удобства крепления и т.д. Из аналитических расчетов следует, что нулевая эквипотенциальная поверхность должна подходить к границе пучка у поверхности катода под углом .Точное выполнение такого условия возможно лишь

при условии изготовления катода и прикатодного фокусирующего электрода в виде единой детали – усеченного конуса, меньшее отверстие которого закрыто катодом. Такое решение неприемлемо по следующим причинам:

1.Фокусирующий электрод, имеющий тепловой контакт с термокатодом, будет играть роль радиатора, отводящего тепло от периферийной зоны катода;

2.Имеет место миграция атомов вещества с поверхности катода на поверхность фокусирующего электрода. Последнее ведет к появлению паразитного тока эмиссии, что может заметно исказить форму пучка. Поэтому, в практических конструкциях между катодом и фокусирующим элементом должен быть хотя бы небольшой зазор.


Рисунок 1 - Пушка Пирса для формирования цилиндрического пучка.


В случае малого катода отверстие в прикатодном электроде делается с радиусом, преувеличивающем радиус катода на ширину зазора (Рис.2)

В случае больших катодов, когда для размещения нагревателя необходима полость, фокусирующий электрод располагается перед катодом (Рис.2).



Рисунок 2 - Конструкции прикатодных электродов.


В обоих случаях эквипотенциальные поверхности искажаются и провисают в зазор. Это ведет к искривлению крайних траекторий электронов, что очень нежелательно, так как именно крайние электроны определяют конфигурацию пучка и оседание части электронного пучка на электроды фокусирующей системы. Искажение поля вблизи зазора зависит не только от величины самого зазора, но также от формы краев электрода и самого катода. Технологические скругления кромок ведут к увеличению провисания поля и возмущению большей доли электронов. При зазоре 0,1 мм и радиусе скругления кромки катода того же порядка потери могут составить 10-15 % от общего электронного потока. Таким образом, при конструировании необходимо как можно более уменьшать зазор и делать кромки, по возможности острыми. Некоторой корректировки можно добиться, подводя отрицательное напряжение к ФЭ, но при этом начинает тормозиться значительная часть электронов. Пушка Пирса такого типа позволяет формировать цилиндрический поток электронов с радиусом, примерно равным радиусу катода. При этом плотность тока в пучке не превышает удельной эмиссии катода. Это означает, что такие пушки формируют относительно слабый поток электронов. Для технологических целей чаще используются пушки с компрессией электронного пучка или пушки, формирующие сходящиеся электронные пучки.

Величина компрессии – отношение площади иммитирующей поверхности катода к площади поперечного сечения луча в заданной точке. Величина компрессии в технологических установках может достигать 20-50 и более. Пушки с компрессий имеют больший срок службы благодаря пониженной удельной эмиссии катода.


Расчет излучателя электронов


Стремление получить большие мощности в луче при низких анодных напряжениях привело в разработке специальной теории электронно-оптических систем с учетом сильного пространственного заряда в луче. Условия работы электронных пушек определили в основном выбор материала катода и конструкцию пушек. Сила, действующая на электрон, движущийся в электрическом и магнитном полях, определяется по уравнению:


, (1)

где - напряженность электрического поля;

- индукция магнитного поля;

- заряд электрона (1,62*Е-16Кл);

- скорость движения электрона.

Первая составляющая, отражающая воздействие на электрон электрического поля, используется для ускорения электронов и формирования электронного луча. Сила, действующая на электрон в электрическом поле, направлена вдоль силовых линий поля и перемещает электрон в сторону положительного полюса. Вторая составляющая силы, действующая только на движущийся электрон, всегда направлена перпендикулярно как к направлению его скорости, так и к силовым линиям магнитного поля. Она не может изменить величину энергии электрона, а лишь меняет направление его движения. Магнитные поля, создаваемые на пути электрона, применяются для фокусировки пучка, компенсации расталкивающего действия пространственного заряда в луче и для изменения направления электронного луча. На рисунке 3.8 показана схема излучателя электронов типичной конструкции аксиального излучателя со сходящимся пучком, состоящего из катода 1, фокусирующего катодного электрода 2, находящегося также под потенциалом катода, и анода 3 с отверстием для вывода пучка в рабочую камеру. Для формирования сходящегося осесимметричного пучка катод и анод должны быть частями концентрических сфер, а фокусирующий электрод должен иметь форму чаши. В основу расчета электронных пушек с высокой плотностью пространственного (объемного) заряда в луче по методу Пирса положен принцип создания такой конфигурации электрического поля в пространстве анод – катод, при которой нейтрализуется радиальная составляющая его, возникающая в результате кулоновских сил расталкивания электронов в луче. Так, если в плоском диоде, полностью заполненном электронным потоком высокой плотности, выделить часть этого потока, то на границе образовавшегося пучка расталкивающие силы компенсируются действием объемного заряда электронов, оставшихся за границей выделенной области. Тот же результат, очевидно, можно получить, если область пространства вне пучка сделать свободной от заряда, но электродам придать определенную геометрическую форму, а потенциалы их подобрать так, чтобы положение краев пучка оставалось неизменным. Для этого вообще достаточно только двух электродов, имеющих соответственно потенциалы катода и анода. При определении формы электродов исходят из того, что электронный пучок является конусом, вырезанным из внутреннего радиального потока между концентрическими сферами. Электроды должны создавать на границе то же поле, которое создает на этой поверхности весь сферический поток. Для идеального сферического диода выражение, связывающее между собой ток , напряжение и расстояние от катода (текущий радиус) , имеет вид

, (2)

где - функция отношения радиуса кривизны катода к текущему радиусу .Распределение потенциала в электронном потоке сферического диода. , (3)

где - функция отношения радиуса кривизны катода к текущему радиусу .

Для создания электронного потока в области, ограниченной конусом с углом при вершине , действие отброшенной части объемного заряда заменяется действием электродов, формирующих электрическое поле между анодом и катодом таким образом, чтобы выполнялись условия:


(4)


Конфигурация прикатодного фокусирующего электрода и анода определяется обычно при помощи электролитической ванны. Аналитическое решение для параллельного пучка (как плоского бесконечной ширины, так и круглого) дает для катодного электрода форму соответственно плоскости или конуса, расположенных под углом к границе пучка. Для излучателей, образующих сходящиеся пучки, условия на границе катода те же, что и для параллельного пучка. Поэтому все виды катодного электрода должны делаться такими, чтобы у самого катода угол между касательной к поверхности электрода и границей пучка был равен , хотя выдерживаться этот угол может на очень малом расстоянии от катода. При определении формы электродов с помощью электролитической ванны автоматически учитывается краевой эффект для электродов малых размеров. Кроме того, таким способом путем экспериментального подбора можно получить несколько различных форм электродов и выбрать из них наиболее удобные конструктивно и технологичные в изготовлении. В ванне также легко определить минимальные размеры электродов, которые еще могут создавать правильное распределение потенциала вдоль границы пучка.






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.