Формирование программы управления. Параметры стимулирующего сигнала (63344)

Посмотреть архив целиком

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ


Кафедра ЭТТ








РЕФЕРАТ

На тему:


«Формирование программы управления. Параметры стимулирующего сигнала»













МИНСК, 2008


Многогранное вовлечение мышц в процесс выполнения определенного движения (например, верхняя конечность при определенных допущениях имеет 27 степеней свободы) требует установления ряда зависимостей между основными параметрами, характеризующими объект управления и определяющими характер управления. К таким параметрам относятся начальное положение опорного аппарата человека (донора и реципиента), определенные параметры ЭМГ донора и реципиента, сила, скорость сокращения мышц при выполнении ими тех или иных движений. Следует связывать динамику определенных параметров ЭМГ в процессе выполнения движения с начальным положением опорного аппарата, с силой, развиваемой мышцей (или группой мышц), и скоростью ее сокращения. Следует также выяснить вопросы, связанные с влиянием на суммарный силовой эффект таких параметров стимуляции, как частота, амплитуда, длительность импульса и его форма.

При формировании программ управления на основе биоэлектрического образа движений необходимый характер сокращения мышц реципиента (быстрые или медленные сокращения) задается характером сокращения «донорных» мышц. В качестве последних могут служить мышцы другого человека (донора), задающего программу движения, либо собственные мышцы того человека, движениями которого управляют (реципиента), но которые функционально не загружены во время стимуляции.

Основным достоинством систем биоэлектрического управления пропорционального типа, является то, что в них человек получает возможность произвольно дозировать биоэлектрический сигнал. Однако создание системы пропорционального управления требует решения ряда принципиальных вопросов, среди которых немаловажными являются выбор способа выделения необходимой или желательной информации из биоэлектрическою сигнала и способа преобразования информативного параметра биоэлектрического сигнала в сигнал, управляющий стимулирующим сигналом.

Для выбора способа выделения информации необходимо располагать характеристиками сигнала. Каковы же основные параметры электрической активности мыши? С количественной точки зрения ЭМГ прежде всего характеризуется амплитудным и частотным параметрами. Среднее значение амплитуды интерференционной ЭМГ при поверх постном отведении колеблется в пределах 20— 200 мкВ. При максимальных напряжениях мышцы величина электрических колебаний ЭМГ может составлять 1—2 мВ. Из внешних факторов на величину амплитуды главным образом оказывают влияние величина площади отведения и межэлектродное расстояние. В наиболее общем виде чем больше площадь электродов и межэлектродное расстояние, тем больше регистрируемая активность.

Знание частотных характеристик ЭМГ важно для выбора рациональной полосы пропускания с точки зрения отношения сигнал/шум и обработки ЭМГ для биоэлектрического управления.

Подавляющее число исследований определяют диапазон максимальных амплитуд спектра ЭМГ в пределах 70—200 Гц. Исходя из данных о полосе частот ЭМГ, можно сделать выбор частотной полосы пропускания усилительных устройств, используемых при разработке БЭСУ Что касается ограничения диапазона пропускания на высших частотах, то фактически все исследователи ограничивают полосу частотами 800—1500 Гц.

Полоса пропускания ограничивается со стороны низких частот по-разному. Чтобы максимально ослабить сетевые помехи, полосу пропускания усилителя обычно начинают с частот, превышающих 50 и даже 100 Гц (для исключения первой гармоники сетевой помехи). Ограничение полосы пропускания усилительных устройств снизу частотой 100 Гц целесообразно еще и потому, что в этой области сильно сказываются частотные составляющие физиологических помех и артефактов, а также шумы входных каскадов усилителей. Хотя ограничение полосы пропускания на низких частотах до 100 Гц приводит к некоторой потере информации, эту потерю считают допустимой. Сужение полосы пропускания усилителя от 1000 до 50—75 Гц при средней частоте 185 Гц увеличивает отношение сигнал/шум в 2,5 раза. Однако наш опыт использования устройств биоэлектрического управления в навязывании движений свидетельствует о целесообразности расширения снизу полосы пропускания усилительных устройств до 20 Гц (как раз с целью уменьшения потерь информации о движении).

Использовать интерференционную ЭМГ непосредственно для управления невозможно. Поэтому предварительно ее нужно подвергнуть обработке с целью выделения полезной информации о движении. Потенциалы ЭМГ должны быть соответствующим образом усилены и преобразованы в форму, пригодную для управления.

Использование биопотенциалов для управления предъявляет к методам обработки сигналов еще одно требование — высокую скорость анализа данных потенциалов. Без этого невозможно эффективно использовать биопотенциалы для управления, так как в течение времени обработки параметры биологической системы могут существенно измениться. Поэтому для биоэлектрического управления типичен такой режим, при котором происходят непрерывный отбор и анализ полезной информации с немедленным использованием результатов этого анализа для управления.

При биоэлектрическом управлении движениями основной целью является то, чтобы мышца реагировала на управляющие сигналы таким же образом, как реагирует нормальная мышца на приходящие к ней нервные импульсы возбуждения. Успех решения этой проблемы во многом определяется решением задач, связанных с формированием алгоритма сокращения мышцы, близкого к естественному. Для этого прежде всего необходимо располагать сведениями о тех зависимостях, которые связывают электрический и механический эффекты активации нормальной мышцы.


Рисунок 1 – Зависимость амплитуды интегрированной ЭМГ; а — от усилия, развиваемого мышцей, при двух (1, 2) различных постоянные скоростях укорочения икроножной мышцы человека; б — от различных скоростей укорочения и удлинения (2) мышцы.


Большинство элементарных компонентов движений человека и животных — это движения вращательные, и при анализе этих движений мы фактически пользуемся понятием момента мышечных сил. Развиваемый мышцей момент зависит от силы и плеча ее приложения. Сила мышцы определяется следующими факторами: размером мышцы - поперечным сечением, проходящим через все мышечные волокна (физиологический поперечник мышцы), уровнем возбуждения (относительным количеством мышечных волокон, вовлеченных в активность в данный момент), длиной мышцы, скоростью изменения длины. Зависимости мышечной силы от такого числа переменных заставляют предположить, что и соотношение между электрической активностью мышцы и развиваемой ею силой будет определяться большим числом факторов. Однако большинство данных, полученных начиная с 50-х годов в исследованиях на людях, дает основание считать, что между усилием мышцы (напряжением при изометрическом сокращении) и параметрами ЭМГ (в частности, амплитудой интегрированной ЭМГ) существует линейная или близкая к линейной зависимость (рис. 1).

Сопоставление параметров интегрированной ЭМГ и силы при разной длине мышц показало, что изменение длины существенным образом сказывается на характере отношения амплитуды интегрированной ЭМГ к развиваемому мышцей усилию (ИР). Приведенные на рис. 10 графики амплитуд ЭМГ для разных грузов не параллельны и особенно отклоняются при малых и больших значениях углов в локтевом суставе. По-видимому, эти отклонения зависят от изменений длины мышц. Большие усилия, развиваемые мышцей, сопровождаются заметным растяжением сухожилий, что приводит к отклонению от линейности соотношений. Поэтому для больших мышц с коротким сухожилием, например для трехглавой мышцы голени, соотношение интегрированной электрической активности и силы мышцы сохраняет линейную зависимость для широкого диапазона усилий этой мышцы. Для мышц с более длинными сухожилиями и меньшим сечением линейная зависимость может нарушаться при усилиях порядка 50-70% максимальной. При утомлении сохраняется линейный характер отношения ИР, а изменяется лишь коэффициент пропорциональности. Изменение в соотношении может вносить также не учитываемая активность антагониста, которая составляет в среднем 10—15% активности агониста. Кроме того, разные мышцы одного и того же сустава развивают разную по величине силу в зависимости от положения сочленяющихся в суставе звеньев.

Таким образом, хотя в большинстве случаев повышение электрической активности сопровождается увеличением мышечной силы, количественное определение по характеристикам ЭМГ таких механических параметров движения, как действующие силы, скорости, работы, затруднительно.

БЭСУ пропорционального типа, обработка ЭМГ донорских мышц включает выпрямление потенциалов с последующим их пропусканием через интегрирующую цепочку. Сглаживание (интегрирующей цепочкой) выпрямленных потенциалов позволяет получить устойчивый, медленно изменяющийся сигнал для управляющей системы. При этом такой выпрямленный и сглаженный (интегрированный) сигнал несет в себе достаточную информацию об изменяющемся усилии мышцы.

Существенным вопросом является выбор постоянной времени интегрирования. Слишком большая постоянная времени интегрирования приводит к увеличению задержки и ухудшает качество отслеживания команд. Небольшая величина постоянной времени приводит к срабатыванию системы управления в такт с отдельными флюктуациями ЭМГ. Желательно выбрать общую постоянную времени системы управления такой, которая была бы близка задержкам, наблюдаемым в организме человека в естественных условиях при управлении произвольными движениями, т. е. приблизительно равной 0,1 с. В силу этих обстоятельств исследователи, занимающиеся биоуправлением протезами и ортопедическими аппаратами, практически выбирают постоянную времени интегрирования от 50 до 100 мс. Следует отметить, что при постоянной времени интегрирования, равной 100 мс, доля переменных составляющих (флюктуации огибающей ЭМГ) может достигать 15—20% среднего значения амплитуды.


Случайные файлы

Файл
111948.rtf
93436.rtf
25245-1.rtf
152869.rtf
24788-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.