Сборка объективов насыпной конструкции. Расчет автоколлимационных точек (63113)

Посмотреть архив целиком

Министерство образования Республики Беларусь

Учреждение образования

«БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ»


Кафедра электронной техники и технологии







РЕФЕРАТ

На тему:



«Сборка объективов насыпной конструкции. Расчет автоколлимационных точек»











МИНСК, 2008


Типы конструкций объективов оптических приборов. Общие требования к сборке объективов


Разнообразные оптические приборы имеют самые различные конструкции объективов: от двух-, трехлинзовых объективов телескопических приборов до сложных многолинзовых фотообъективов с переменным фокусным расстоянием. Конструктивные особенности объективов накладывают отпечаток на способ их сборки.

Объективы представляют собой центрированные оптические системы, т.е. систему линз или зеркал, центры кривизны сферических поверхностей которых расположены на прямой липни, называемой оптической осью системы.

В зависимости от точности центрирования линз различают следующие основные типы объективов.

1. Объективы «насыпной» конструкции, в которых линзы в оправах при сборке центрируют с максимально возможной точностью относительно посадочных поверхностей оправы и устанавливают затем с минимально возможным зазором в общий корпус объектива без дополнительной юстировки.

2. Объективы со свинчивающимися справами, линзы и оправы которых изготовляют по калибрам и соединяют между собой с минимально допустимыми зазорами. Оправы с линзами соединяют с корпусом объектива резьбой без дополнительной юстировки.

3. Объективы единичных приборов и приборов, выпускаемых мелкими сериями, детали которых подгоняют в процессе сборки, сопровождаемой юстировкой.

Процесс сборки объективов должен обеспечить: получение требуемых параметров объектива (фокусного и рабочего расстояний, разрешающей силы и необходимого качества изображения); надежную и длительную работу объектива в реальных условиях эксплуатации; выпуск необходимого количества объективов в установленные сроки.

Процесс сборки объектива имеет два этапа: предварительную и окончательную сборку.

Предварительная сборка включает в себя:

подготовку механических деталей (промывку и чистку деталей);

сборку механических узлов объектива (ирисовой диафрагмы, фокусировочной оправы объектива);

предварительную сборку блока объектива, т. е. установку и крепление линз в оправах и сборку оправ с линзами в корпусе объектива, при которой обеспечивают необходимую величину межлинзовых воздушных промежутков.

Окончательная сборка включает в себя:

чистку линз в оправах;

установку оправ с линзами в корпусе объектива и центрирование объектива;

сборку механизмов, располагающихся на объективе;

выполнение рабочего расстояния объектива;

окончательную чистку внешних деталей объектива;

контроль параметров объектива в лаборатории и ОТК с оформлением паспорта;

упаковку объектива для отправки в цех сборки фотоаппаратов или на склад готовой продукции.

Приведенная последовательность сборки типична для мелкосерийного изготовления объективов. При индивидуальной сборке объективов возможно совмещение этапов сборки.

При крупносерийном изготовлении объективов указанные этапы сборки разбивают на более мелкие и сборочный процесс часто оформляют в виде конвейерной сборки.

Сборка объектива без последующей юстировки возможна лишь при изготовлении деталей с очень высокой точностью из материалов, полностью отвечающих предъявляемым требованиям. Однако в условиях реального производства размеры деталей объектива имеют отклонения от номинальных величин. Эти отклонения необходимо компенсировать в процессе сборки.

Реальный объектив, изображая предмет, вносит искажения в его форму, цвет, соотношение яркостей его частей. Эти искажения обусловлены:

остаточными аберрациями объектива (искажениями изображения, допускаемыми при расчете объектива);

отклонениями размеров оптических деталей и формы их преломляющих и отражающих поверхностей;

отклонениями преломляющих свойств стекла, возникающими при его варке (изменение показателя преломления по объему стекла);

неточным взаимным расположением оптических деталей в собранном объективе, вызываемым неточностью изготовления оправ и децентрировкой линз;

неодинаковым спектральным пропусканием просветляющих пленок и стекла линз;

влиянием рассеянного света, возникающего в результате отражения света от поверхностей линз и оправ.

Отклонения показателей преломления линз в полученной партии стекла учитывают перед изготовлением оптических деталей путем перерасчета толщин линз, расстояний между линзами и иногда радиусов линз. Сочетание показателей преломления стекла линз в данной партии называется комбинацией и обозначается порядковым номером в сопроводительном документе партии оптических деталей.

Отклонения толщин линз компенсируют, подбирая их таким образом, чтобы по возможности не увеличивать аберраций объектива. При этом в случае необходимости из меняют величину междулинзовых воздушных промежутков. Поэтому к комплекту линз, направляемому на сборку
объектива, прилагают комплектовочную таблицу, в которой указываются номер комбинации парт; и стекла, отклонения толщин линз и окончательные величины воздушных промежутков, которые необходимо выдержать при
сборке объектива.

Отклонения радиуса линзы от номиналы ой величины (так называемой «цвет» поверхности) и отклонения формы поверхности линз проверяют сравнением с эталонной поверхностью при изготовлении линзы и не учитывают при комплектации линз.

Неблагоприятное сочетание перечисленных отклонений приводит к существенному ухудшению качества изображения и к необходимости изменения воздушных промежутков объектива после его сборки.

Дефекты поверхностей линз «(бугры», «ямы», двойная кривизна поверхности, «сорванный цвет») и недопустимая оптическая неоднородность стекла (плавная или в виде «свилей») не могут быть скомпенсированы при сборке объектива.

Деформации поверхностей линз и зеркал при креплении в оправах должны быть устранены перед сборкой, так как ухудшение качества изображения, вызванное их воздействием, в процессе сборки нельзя скомпенсировать.

При чрезмерном ухудшении качества объектива от суммарного воздействия указанных выше причин объектив бракуют и возвращают для устранения этих причин.

Важнейшей операцией при сборке объектива является его центрирование.

Центрированием объектива называется расположение центров кривизны всех оптических поверхностей на одной прямой линии, называемой оптической осью объектива:

Смещение центра кривизны поверхности с оптической оси объектива называется децентрировкой поверхности и приводит к ухудшению качества изображения, образуемого объективом, что выражается в появлении «комы» в центре поля изображения и наклоне плоскости изображения с наилучшей резкостью.

Допустимые значения децентрировки для каждой оптической поверхности вычисляют при расчете объектива, учитывают при разработке конструкции и назначении допусков на изготовление деталей и сборку объектива.


Сборка объективов насыпной конструкции


Метод сборки объективов насыпной конструкции называют автоколлимационным методом сборки. Его применяют для объективов, требующих особенно точного центрирования линз, например сильных микрообъективов, светосильных киносъемочных объективов, широкоугольных фотообъективов.

Метод сборки заключается в центрировании базовых поверхностей оправы относительно оптической оси линзы. Затем оправы с линзами вставляют в корпус объектива с минимальным зазором по диаметру оправ. В результате центры кривизны поверхностей линз будут расположены с достаточной точностью вблизи геометрической оси корпуса объектива, т. е. обеспечивается хорошая центрировка объектива. Конструктивное оформление, объектива, собранного автоколлимационным методом, показано на рис.1.

Линзы, предназначенные для автоколлимационной сборки, в оптическом цехе центрируют с невысокой точностью (0,03—0,1 мм). Оправы для линз изготовляют в механическом цехе с припусками по наружному диаметру и торцам. Затем линзы закрепляют в оправах завальцовкой или резьбовым кольцом.

Рассмотрим чертеж линзы фотообъектив в оправе для автоколлимационной сборки (рис.2).

На чертеже обычно указывают допустимые децентрировки поверхностей А и Б относительно геометрической оси оправы 20**. Допустимые децентрировки берут из оптической схемы объектива. Центры кривизны поверхностей линзы, закрепленной в оправе, расположены относительно оси оправы линзы с децентрировками, превышающими допустимые (так как оправа под линзу изготовлена заранее в механическом цехе по 2-му или 3-му классам точности, а линза имеет децентрировку при изготовлении в оптическом цехе).


Рис.1. Широкоугольный фотообъектив «Руссар МР-2» (=20мм).

Рис.2. Пример чертежа линзы для автоколлимационной сборки.


Децентрировку можно уменьшить до допустимой величины, если линзу в оправе на специальном центрировочном патроне смещать и разворачивать таким образом, чтобы центры кривизны ее поверхностей совместились с осью вращения шпинделя токарного станка, после чего обработать базовые поверхности оправы. При этом оптическая ось линзы совмещается с геометрической осью оправы с требуемой точностью.

Рассмотрим схематически процесс центрирования линзы. На рис. 3, а изображена линза, установленная в центрировочном патроне. Линза установлена так, чтобы центр кривизны наружной поверхности линзы был расположен в одной плоскости с центром кривизны О сферической части патрона. Центры кривизны поверхностей линзы и смещены относительно оси шпинделя станка и при вращении шпинделя описывают окружности. Смещения центров кривизны с оси вращения шпинделя наблюдают и измеряют с помощью автоколлимационной центрировочной трубки ЮС-13, разработанной А.А. Забелиным.


Случайные файлы

Файл
рии.doc
3254.rtf
27108-1.rtf
64284.rtf
72738.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.