Лазерные измерители вибрации (виброметры) (62576)

Посмотреть архив целиком

Министерство науки и образования Украины

Национальный авиационный университет

Институт электроники та систем управления










Лазерные измерители вибрации








Группа 408 ФЭЛ

Шабля Олеся Леонидовна



Лазерный виброметр повышенной чувствительности


Лазерная виброметрия – современный, качественно новый уровень измерения параметров механических колебаний объектов. Уникальные физические особенности лазерных методов определяют многие их достоинства. Это возможность дистанционного бесконтактного измерения вибрации и отсутствие влияния на резонансные свойства объектов, в том числе микроскопических размеров; возможность измерений без предварительной подготовки поверхности объекта и оперативное измерение вибраций в различных точках объекта в опасной для персонала зоне (химически агрессивной, с высокой температурой, радиацией и т.д.).

ФГУП "ННИПИ "Кварц" разработал первый отечественный портативный лазерный виброметр повышенной чувствительности. В 2007 году после проведения государственных испытаний прибор включен в Государственный реестр средств измерений Российской Федерации.

Лазерный виброметр предназначен в первую очередь для дистанционного измерения виброскорости исследуемого объекта или его части в пределах от 0,01 до 50 мм/с на виброчастотах от 80 Гц до 11 кГц с возможностью расширения диапазона виброчастот в сторону низких частот до 10 Гц. Измерительная дистанция от лазерного виброметра до испытуемого объекта составляет от 1,5 до 10 м и более. Напряжение питания виброметра – 12 В постоянного тока от переносной аккумуляторной батареи или от источника питания, подключаемого к сети переменного тока 220 В (50 Гц). Потребляемая мощность – 15–20 Вт (в зависимости от режима работы).

Принцип работы лазерного виброметра основан на доплеровском сдвиге частоты оптического (лазерного) излучения, отраженного от движущегося объекта. В этом случае применяют метод оптического гетеродинирования отраженного от объекта слабого оптического сигнала на основе двухлучевой интерференционной оптической схемы с последующим формированием квадратурных компонент электрического сигнала фотодетекторами балансного типа. Микропроцессоры, входящие в состав лазерного виброметра, производят цифровую обработку и анализ вибрационных сигналов. Результаты в виде спектрограмм или осциллограмм отображаются на экране внешнего компьютера, подключенного через каналы RS-232 или USB, разъемы которых размещены на панели управления прибора. Измерение параметров сигнала проводится при помощи подвижного маркера на экране дисплея.



В состав портативного лазерного виброметра входит карманный персональный компьютер (КПК). Он в графическом виде отображает результаты измерений на дисплее; управления режимами работы лазерного виброметра через виртуальную панель управления, в том числе режимами обработки сигнала и отображения его во временной (осциллограф) или в частотной (анализатор спектра) областях; выбирает пределы амплитудных измерений и длительности развертки в режиме осциллографа, а также частотную полосу обзора в режиме анализатора спектра и число усреднений реализаций спектров от 1 до 256; выполняет функцию установки линейного или логарифмического масштабов в режиме анализатора спектра и в режиме записи результатов измерений на флэш-карту в формате, выбранном оператором и с возможностью последующего воспроизведения на другом компьютере. Разработано программное обеспечение, которое позволяет управлять всеми перечисленными функциями и режимами при помощи стандартных компьютеров по каналам RS-232 или USB, что дает возможность включать лазерный виброметр в автоматизированные измерительные системы. В состав лазерного виброметра входят оптическая система, формирующая квадратурные составляющие доплеровского сигнала, и электронная система (рис.1).


Оптическая схема лазерного виброметра


В основе оптической схемы виброметра лежит классическая схема интерферометра Майкельсона. Базовые структурные элементы оптической системы виброметра (рис.2): лазерный источник монохроматического излучения; телескопическая система, выполняющая функции приемо-передающей "оптической антенны"; оптическая система сопряжения волновых фронтов сигнальной и опорной волны типа "кошачий глаз"; фотоприемные модули балансного типа; оптический делитель-смеситель для формирования и пространственного совмещения опорного и сигнального лазерных пучков.

Сложность и особенности схемы обусловлены техническим назначением виброметра и связаны со значительным (на 5–7 порядков) ослаблением принимаемой световой мощности лазерного пучка, направляемого на объект, а также со спектр-структурой распределения интенсивности волнового фронта диффузно отраженного излучения лазера.

Лазерный пучок с линейной поляризацией от модифицированного лазера ГН-2П (λ=0,63 мкм) поворотными призмами 2 и 3 направляется на поляризующий делитель 4, где разделяется на два пучка равной мощности: сигнальный (трасса 4, 5, 6, 7,20) и опорный (трасса 4, 11, 10, 9, 8) со взаимно-ортогональными поляризациями. Телескопическая система (6, 7) в сигнальном плече интерферометра (кратность увеличения 14×) предназначена для фокусировки излучения на поверхности объекта. Эта фокусировка должна быть достаточной для того, чтобы спекл-структура фронта отраженной волны ("спекл-поле") воспринималась, при соответствующем наведении излучения на объект, как квазиоднородная монохроматическая волна. Четвертьволновые фазовые пластины (5, 10) производят поворот поляризации сигнального и опорного пучков на 90° относительно исходных. Это необходимо для беспрепятственного прохождения ими поляризующего делителя (4) в направлении к неполяризующему делителю (12), ориентированному к пучкам под углом 45° и разделяющему каждый из них на два идентичных пучка. Лазерные пучки после делителя (12) попадают в фотоприемные модули (13, 14, 15) и (17, 18, 19), в состав которых входят по два фотоприемника на основе фотодиодов КДФ-113 и по одному делителю-поляризатору типа (4). Указанная на схеме ориентация делителей под углом 45° обеспечивает формирование сдвинутых по фазе на 180° интерференционных сигналов в каждой паре фотоприемников: (14, 15) и (18, 19) соответственно. Это позволяет при вычитании инвертированных электрических сигналов с выходов фотоприемников улучшить отношение сигнал/шум. Фазовая пластина (16) осуществляет относительный сдвиг фазы оптических сигналов на четверть периода, чтобы в фотоприемных модулях формировались квадратурные электрические сигналы.


Электронная система лазерного виброметра


Электронная система состоит из фотоприемников, которые преобразуют оптические квадратурные составляющие доплеровских сигналов в соответствующие им электрические. Последние усиливаются в блоке малошумящих усилителей с системой автоматической регулировки усиления. С выхода блока усилителей квадратурные доплеровские сигналы поступают на демодуляторы, которые их преобразуют в сигналы, пропорциональные мгновенным значениям виброскоростей исследуемого объекта.В системе присутствуют два вида демодуляторов: демодулятор частотный, предназначенный для формирования сигнала виброскорости от 50 до 0,2 мм/с, и демодулятор аналитического сигнала для формирования сигнала виброскорости от 1 до 0,01 мм/с. Демодуляторы построены на основе аналого-цифровых схем с применением микропроцессоров. С выходов демодуляторов аналоговый сигнал виброскорости поступает на выходной разъем и на вход управляющего блока, созданного на базе сигнального и управляющего микропроцессоров. Такое сочетание микропроцессоров позволило реализовать разные режимы работы управляющего блока: режимы осциллографа, анализатора спектра, а также связь с внешними устройствами по каналам RS-232 и USВ (отображается информация об измерениях и обеспечивается управление режимами работы лазерного виброметра).



Режим анализатора спектра считается типовым режимом работы лазерного виброметра. В этом режиме определяются значения резонансных частот исследуемых объектов и измеряются уровни сигналов малых значений виброскорости при наличии сопутствующих шумов различного происхождения. Если сравнить сигналы во временной и частотной областях, то выявится очевидное преимущество спектрального подхода к измерению виброскорости. Если уменьшить амплитуду в 100 раз (до -40дБ), то корректно измерить амплитуду сигнала во временной области будет сложно из-за сильных шумов. В спектральной области амплитуда измеряется с гораздо меньшей погрешностью: разность между значениями 9,38 дБ и -49,53 дБ составляет -40,15 дБ. Измерить значения виброскорости порядка 10 мкм/с и менее можно только в режиме спектрального анализа.


Технические характеристики портативного лазерного виброметра

Диапазон частот колебаний.......................80 Гц–11 кГц

Диапазон измерения виброскорости.........0,01–50 мм/с

Погрешность измерения виброскорости:

в диапазоне 1–50 мм/с ...................................10%

в диапазоне 0,01–1 мм/с..................................20%

Напряжение питания ............................................. 2 В

Потребляемая мощность .................................... 20 Вт

Габариты .......................................... 430×240×160 мм

Масса ................................................................12 кг


Случайные файлы

Файл
19801.rtf
11955-1.rtf
21815-1.rtf
74273.rtf
16064-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.