Измерение параметров и характеристик сверхвысокочастотных линий связи и их компонентов (62389)

Посмотреть архив целиком

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ИНФОРМАТИКИ ИРАДИОЭЛЕКТРОНИКИ


Кафедра метрологии и стандартизации







РЕФЕРАТ

На тему:

«Измерение параметров и характеристик сверхвысокочастотных линий связи и их компонентов»















МИНСК, 2008


Общие сведения и классификация методов и приборов СВЧ цепей


К цепям с распределенными постоянными (СВЧ цепям) относятся цепи, геометрические размеры которых соизмеримы с длиной волны распространяющихся вдоль них колебаний.

СВЧ цепи можно разбить на: двухполюсники (ДП) и четырехполюсники (ЧП).

Из теории длинных линий известно, что для полного описания свойств двухполюсников (ДП) достаточно знать волновое (характеристическое) сопротивление линии (W), на котором он сконструирован, и комплексный коэффициент отражения в рабочем диапазоне частот.

Комплексный коэффициент отражения определяется как отношение комплексной амплитуды напряжения волны отраженной от ДП к комплексной амплитуде напряжения волны, падающей на него:

. (1)

Значение и характер позволяет оценить качество согласования полного сопротивления ДП с волновым сопротивлением тракта. Количественно эта связь определяется отношением

. (2)

На практике также часто пользуются значением коэффициента стоячей волны по напряжению (КСВН)

КСВН – определяется как отношение максимальной (Umax) и минимальной (Umin) амплитуд электрического поля стоячей волны в линии передачи:

. (3)

На рисунке 1,в показана картина стоячих волн напряжения в линии передачи СВЧ (рисунок 1,а). В этой линии имеет место интерференция падающих (Uп) и отраженных волн (U0). На рисунке 1,б показана векторная диаграмма, показывающая образование суммарного сигнала UΣ.

Значения и связаны между собой следующим соотношением:

. (4)

Описанные выше параметры полностью определяют номенклатуру измеряемых параметров ДП.

















Номенклатуру измеряемых параметров ЧП составляют элементы матрицы S-параметров:

, (5)


Эту матрицу называют еще матрицей рассеяния. Смысл ее элементов следующий.

На приведенном ниже рисунке 2 приведена эквивалентная схема ЧП на СВЧ.




Выход

Вход





Рисунок 2


Напряжение нормированные комплексные амплитуды волн, реально падающие на ЧП, отраженных от него и прошедших через него. Элементы матрицы S – параметров представляют собой комплексные коэффициенты отражения и передачи ЧП и определяются из выражений

коэффициент отражения входа ЧП;

коэффициент отражения выхода ЧП;

коэффициент передачи со входа на выход;

Коэффициент передачи с выхода на вход .

Для измерения описанных выше параметров на практике используется следующие приборы:

Р1 – измерительные линии;

Р2 – панорамные измерители коэффициентов отражения и передачи (скалярные анализаторы цепей – САЦ);

Р3 – измерители полных сопротивлений;

Р4 – измерители S-параметров (векторные анализаторы цепей – ВАЦ);

Р5 – измерители неоднородностей линий передачи (импульсные рефлектометры).

Методы измерения, на которые базируются приборы перечисленных видов можно разбить на три группы:

1) основанные на анализе распределения поля стоячей волны в линии передачи (Р1 и Р3);

2) связанные с выделением и измерением отношений направлений падающих, отраженных и прошедших волн (Р2 и Р4);

3) метод импульсной (временной) рефлектометрии (Р5).


Основные методы и средства измерений параметров СВЧ цепей


Обобщенная структурная схема измерителя (анализатора) СВЧ цепей

Обобщенная структурная схема измерителя СВЧ цепей представлена на рисунке 3.

Назначение и основные функции блоков измерителя:

Генератор качающейся частоты (ГКЧ) - формирование СВЧ измерительного сигнала и управление этим сигналом;

СВЧ измерительный тракт - выделение информационных СВЧ измерительных сигналов;

Преобразователь информационно  измерительных сигналов - преобразование информационных  измерительных сигналов из СВЧ диапазона в НЧ диапазон;

Блок измерительный:

- фильтрация и усиление преобразованных сигналов;

- функциональные преобразования сигналов;

- управление процессом измерения;

  • индикация и отсчет результатов измерения.












Типы измерительных трактов и их компоненты


По принципу действия схемы измерительных трактов делятся на:

интерференционные;

рефлектометрические.

Интерференционные схемы используются в измерительных линиях. Принцип действия рефлектометрических схем основан на выделении с помощью направленных ответвителей сигналов пропорциональных мощностям падающей, отраженной и прошедшей волн.


Измерительные направленные ответвители


На рисунке 4,а изображен однонаправленный волноводный ответвитель, ориентированный на отраженную волну, а на рисунке 4,б – схемы сложения возбуждающихся волн.

Под воздействием токов, протекающих по стенкам основного волновода щели А и В возбуждают во вторичном волноводе электромагнитной волны, которая распространяется в разные стороны от щелей. Если энергия падающей волны Рn распространяется слева направо, то поле, возбужденное щелью А, сложится в фазе с полем, возбужденным В, так как пути пройденные ими равны и равны λв/4 (диаграмма 1). Энергия суммарного поля во вторичном волноводе поглотится согласованной нагрузкой (СН). Поля этой же волны распространяющиеся во вторичном волноводе справа налево сложатся в противофазе (диаграмма 2), так как пути, пройденные ими будут отличаться на λв/2 и если они равны, то (т.е. они взаимно уничтожаются).

Таким образом энергия поля, возбуждающегося во вторичном волноводе под действием падающей волны не вызовет тока в цепи детектора.

Аналогичное рассмотрение процесса сложения полей, возбужденных щелями А и В при распространении энергии отраженной волны (диаграммы 3,4), позволяет сделать вывод о том, что ток, вызываемый в цепи детектора будет пропорциональным мощности отраженной волны .

Если переориентировать направление ответвления на падающую волну, то ток детектора будет пропорционально .





Pо


P0



Pn

Pn




Pn








P0


Основными параметрами направленных ответвителей являются – переходное ослабление, направленность и КСВН входов (выходов).

Переходное ослабление – величина связи первичного и вторичного каналов направленных ответвителей. Оно обычно выражается в децибелах и равно:

. (6)

В измерителях обычно используются направленные ответвители с С=10 или 20 дБ.

Направленность ответвителя – величина, характеризуется «просачивание» в плечо с детектором поля неосновной волны, то есть волны, противоположной той, на которую ориентирован направленный ответвитель. Направленность также определяется в децибелах и равна:

, (7)

Промышленные направленные ответвители имеют направленность порядка 30…50 дБ с КСВН входов от 1,1 до 1,3.


Скалярные анализаторы цепей


Современные скалярные анализаторы цепей (панорамные измерители коэффициентов отражения и передачи) состоят из ГКЧ с системой автоматического регулирования мощности (АРМ), СВЧ измерительного тракта (рефлектометра), состоящего из трех последовательно соединенных направленных ответвителей и унифицированного индикатора.

Структурная схема скалярного анализатора представлена на рисунке 5.





На выходе ГКИ формируется частотно и амплитудно-модулированный СВЧ сигнал постоянного уровня. Для частотной модуляции в качестве модулирующего направления используется сигнал генератора развертки, который конструктивно входит в ГКЧ. Амплитудная модуляция обычно осуществляется напряжением типа «меандр» частоты 100 КГц от внутреннего или внешнего источника модулирующего напряжения. Постоянство выходной мощности ГКЧ поддерживается с помощью системы АРМ, которая работает по сигналу , подаваемому из индикатора в генератор.

Использование измерителя отношений в индикаторном блоке существенно снижает требования к качеству стабилизации выходной мощности ГКЧ.

ГКЧ включает в себя и блок частотных меток. Выходные сигналы этого блока после преобразования в индикаторе воспроизводятся на изображении исследуемых характеристик в виде подвижных частотных меток.

Измерительный тракт состоит из трех направленных ответвителей (НО). НО1 ответвляет сигнал пропорциональный мощности падающей волны Рn; НО2 - мощности отраженной волны Р0; НО3 - мощности прошедшей волны Рпр.

Сигналы НО детектируются квадратичными детекторами. Выходные напряжения детекторов позволяют определить модуль коэффициента отражения:

, (8)

и ослабление:

, (9)

Для скалярных анализаторов цепей характерно применение унифицированного индикатора КСВ и ослабления, работающего на частоте амплитудной модуляции ГКЧ. Этот индикатор обеспечивает усиление сигналов пропорциональных ,,, деление их с помощью измерителя отношений, детектирование и панорамное воспроизведение на экране ЭЛТ измеряемых характеристик в линейном и логарифмическом масштабах с отсчетом значений измененных величин.


Случайные файлы

Файл
114453.rtf
74452-1.rtf
57181.rtf
157661.rtf
56806.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.