Зонная модель твердого тела. Уравнение Шредингера для кристалла (62382)

Посмотреть архив целиком

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ


Кафедра ЭТТ









РЕФЕРАТ:

«Зонная модель твердого тела. Уравнение Шредингера для кристалла»














МИНСК, 2008


Любое твердое тело представляет собой систему, состоящую из огромного числа ядер и ещё большего числа электронов. Современное состояние математической физики позволяет утверждать, что целый ряд сведений о свойствах такой системы, в том числе и об энергетическом спектре можно получить из решения уравнения Шредингера, описывающего стационарные состояния этой системы. В этом случае уравнение Шредингера имеет вид:


Где m и M соответственно массы электронов и ядер; ri и Rj – радиус-векторы i-го электрона и j-го ядра; Zj и Zn – атомные номера ядер; Rjn , rik, rij – расстояния между соответствующими ядрами и электронами; Е – полная энергия кристалла; Ψ – собственная волновая функция системы электронов и атомов.

В приведенном уравнении первое слагаемое описывает кинетическую энергию электронов, второе – кинетическую энергию ядер. Множители при волновой функции в следующих трёх слагаемых описывают соответственно, потенциальную энергию взаимодействия ядер с друг другом, электронов друг с другом и энергию взаимодействия электронов с ядрами.

Сегодня неизвестны способы точного решения уравнения Шредингера, так как для кристалла волновая функция Ψ зависит от огромного числа (1024-1025) независимых переменных ( в 1см2 содержится примерно 5∙1022 ядер атомов, каждое ядро содержит большое количество электронов).

Теория должна найти разумные допущения, которые позволят решать данное уравнение, сохранить его принципиальные черты, отличающие кристалл от отдельного изолированного атома.

Прежде чем рассматривать свойства твердых тел необходимо рассмотреть закономерности образования твердого тела из отдельных изолированных атомов.


Обобществление электронов в кристалле.


Для того чтобы понять особенности явлений, имеющих место в твердых телах, рассмотрим следующий идеализированный пример. Возьмем атом натрия.

Расположим N атомов натрия на больших расстояниях друг от друга в трехмерном пространстве так, чтобы они образовали в значительно увеличенном виде кристаллическую решетку натрия. Так как расстояния между атомами r значительно больше параметра решетки а( а= 4.3Å; r>>а), то взаимодействием между атомами можно пренебречь.

На рисунке каждый атом изображен в виде потенциальной ямы, внутри которой проведены энергетические уровни 1s, 2s и 2p - укомплектованы у натрия полностью, уровень 3s – наполовину, остальные уровни, расположенные выше уровня 3s – свободны.

Изолированные атомы отделены друг от друга потенциальными барьерами шириной r. Высота барьера для электронов, находящихся на разных уровнях различна. Она равна расстоянию от этих уровней до нулевого уровня 00. Потенциальный барьер препятствует свободному переходу электронов от одного атома к другому.

Рис. Ррасположение атомов натрия в линейной цепочке. d-параметр решетки.

Качественная картина распределения плотности вероятности обнаружения электронов на данном расстоянии от ядра показывает, что максимумы этих кривых примерно соответствуют положению боровских орбит для эти электронов.

Теперь начнем сближать атомы натрия таким образом, чтобы в конце однородного сжатия они находились бы на расстояниях, равных параметру решетки. По мере сближения атомов взаимодействие между ними возрастало и достигло максимальной величины при образовании кристалла. При образовании кристалла потенциальные кривые, отделяющие соседние атомы, частично перекрываются и дают результирующую потенциальную кривую (1α2), проходящую ниже нулевого уровня 00. При сближении атомов уменьшается не только ширина барьера, но и его высота. При этом оказывается, что высота барьера между атомами в кристалле оказывается даже ниже первоначального положения уровня валентных электронов 3s. Таким образом, валентные электроны получают возможность практически беспрепятственно переходить от одного атома к другому.

Об этом свидетельствует и характер волновых функций этих электронов: они перекрываются настолько сильно, что дают электронное облако практически равномерной плотности, чему соответствует состояние полного обобществления валентных электронов, при котором вероятность обнаружения их в любом месте решетки совершенно одинакова.

Электронные облака внутренних оболочек атома не перекрываются вследствие чего состояние внутренних электронов в кристалле остаётся фактически таким же, как и в изолированных атомах.

Коллективизация валентных электронов является прямым следствием физической эквивалентности всех ионов решётки и поэтому каждый электрон принадлежит одновременно всем ионам решётки с равной вероятностью может быть обнаружен вблизи любого из них. Такие электроны образуют в кристалле электронный газ.


Основные приближения зонной теории.


1. Зонная теория твёрдых тел является моделью изучения электронных свойств идеальных периодических структур кристаллов. В этом суть первого приближения.

Ранее приведённое уравнение Шредингера удобно представить в виде:

где

- гамильтониан кристалла;

- собственная волновая функция гамильтониана;

Е – энергия кристалла.

Оператор Гамильтона включает в себя: оператор кинетической энергии электронов - ; оператор кинетической энергии ядер - ; потенциальную энергию попарного взаимодействия электронов , ядер , электронов с ядрами - . В этих обозначениях уравнение имеет вид:



2. Второе упрощение называют упрощением Борна-Оппенгеймера, при котором всю систему частиц разделяют на электроны и атомные ядра и рассматривают их кинетические энергии в равновесном состоянии. Пользуясь законом равенства количества движения в системе ядро-электрон без учёта количества движения от внешнего источника можем записать:

Для водорода M=1840m. Из-за разницы масс будет и разница в скоростях теплового движения ядер и электронов. Ядра можно считать неподвижными по сравнению с электронами. Таким образом, движение электронов и ядер можно считать независимым, проходящим без обмена энергией между электронной и ядерной подсистемами частиц. В этом и состоит смысл адиобатического приближения (А.И. Ансельм “Введение в теорию полупроводников”, Физмат. изд. 1963 – в этой книге можно найти много интересного о методах решения уравнения Шредингера для кристалла).


3. Третье допущение называют одноэлектронным приближением. Рассмотрим его более подробно в следующем параграфе.

Таким образом, в основе зонной теории, приводящей к зонной картине электронного энергетического спектра твёрдого тела, лежат следующие главные приближения:

  1. Твёрдое тело представляет собой идеально переодический кристалл.

  2. Равновесные положения узлов кристаллической решётки фиксированы, т.е. ядра атомов считаются неподвижными (адиабатическое приближение). Малые колебания атомов вокруг равновесных положений, которые могут быть описаны как фононы, вводятся в последствии как возмущения электронного энергетического спектра.

  3. Многоэлектронная задача сводится к одноэлектронной: воздействие на данный электрон всех остальных описывается некоторым усреднённым переодическим полем.

  4. Одноэлектронное описание многоэлектронных систем.

  5. Идея одноэлектронного приближения ведёт своё начало с доквантово-механической – боровской – теории сложных атомов. Эта модель основана на допущении, что действие на данный электрон всех ядер и всех остальных электронов системы приближённо можно заменить действием некоторого усреднённого “эффективного” поля, потенциальная энергия электрона в котором – так называемый “эффективный одноэлектронный потенциал”

(1)

зависит только от координат этого электрона (x,y,z). Таким путём исследование различных многоэлектронных систем сводится к исследованию движения одного электрона в полях с различными потенциалами.

В дальнейшем нас будут интересовать не любые состояния электрона в поле (1), а лишь так называемые стационарные состояния. Таким состояниям в боровской модели атома соответствовали устойчивые орбиты электронов. В квантовой механике боровские орбиты для стационарных состояний электрона заменяются определёнными во всём трёхмерном пространстве одноэлектронными волновыми функциями,


(2)


которые называют также орбиталями.

Стационарным состояниям соответствуют определённые энергетические уровни. Таким образом последовательности одноэлектронных орбиталей для стационарных состояний электрона в поле (1)


(3)


отвечает последовательность одноэлектронных уровней


(4)


или одноэлектронный энергетический спектр системы. Может случиться, что нескольким функциям (3) соответствует один и тот же энергетический уровень. Такой уровень называется вырожденным, а число разных функций, соответствующих этому уровню называют кратностью вырождения уровня.


Случайные файлы

Файл
143486.rtf
14168-1.rtf
107563.doc
95079.rtf
71870.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.