Научные проблемы кораблестроения и их решение (8464-1)

Посмотреть архив целиком

Научные проблемы кораблестроения и их решение

И.Г. Захаров, доктор технических наук, профессор, контр-адмирал; В.В.Емельянов, кандидат технических наук, капитан 1 ранга; В.П. Щеголихин, доктор технических наук, капитан 1 ранга; В.В. Чумаков, доктор медицинских наук, профессор, полковник медицинской службы

Создание современного корабля основывается на достижениях многих наук, и, прежде всего на науках, изучающих мореходные характеристики корабля, архитектуру и прочность его корпуса, проблемы защиты от поражающего воздействия оружия, вопросы взрыво- и пожароопасности, скрытности от средств обнаружения по физическим полям, а также обеспечения обитаемости и многие другие качества корабля. Рекомендуемые при проектировании, строительстве кораблей технические идеи и конкретные решения должны отвечать уровню развития техники не только текущего периода, но и прогнозируемого на последующие 10-20 лет. Именно поэтому во всем цикле создания кораблей особенно важная и ответственная роль отводится решению различных научных проблем кораблестроения, направленных на улучшение боевых и эксплуатационных качеств надводных кораблей и подводных лодок.

Непотопляемость и остойчивость

Основы теории и практики непотопляемости кораблей были заложены в начале ХХв. замечательным русским флотоводцем и ученым вице-адмиралом С.О.Макаровым, которые затем развил академик А.Н.Крылов. Основоположником современной отечественной школы непотопляемости кораблей по праву считается видный ученый-кораблестроитель контр-адмирал В.Г.Власов. В практику борьбы за непотопляемость корабля внесли значительный вклад Д.В.Дорогостайский и Г.Е.Павленко.

В конце 40-х - начале 60-х годов встал вопрос о том, какой из методов спрямления корабля, получившего повреждение корпуса с затоплением части отсеков и имеющего значительный крен и дифферент, рекомендовать для внедрения на флоте. Проведенная по инициативе 1-го Центрального научно-исследовательского института (1-гоЦНИИ) ВМФ в 1953г. научная конференция по вопросам живучести кораблей приняла решение начать натурные испытания по спрямлению кораблей.

Специальная комиссия, в которой участвовали видные флотские ученые 1-гоЦНИИМО, Военно-морской академии (ВМА) им.А.Н.Крылова, Высшего военно-морского инженерного ордена Ленина училища (ВВМИОЛУ) им.Ф.Э.Дзержинского и специалисты промышленности, провела уникальные опытовые учения в Кронштадте по спрямлению крейсера “Максим Горький” и эсминца “Строгий”. На кораблях подвергались фактическому затоплению намеченные отсеки. В результате успешно проведенных испытаний комиссия единогласно признала наиболее целесообразным способ спрямления, предложенный В.Г.Власовым. Принципиальной особенностью этого способа являлось определение потребного спрямляющего момента и на этой основе подбора отсеков, используемых для спрямления в условиях, когда нет достоверных сведений о затопленных помещениях корабля. Такие условия в максимальной степени отвечали условиям борьбы за живучесть корабля в боевой обстановке. В этом отличие от ранее предложенного А.Н.Крыловым способа и его практическая ценность. Приказом по флоту опробованный способ спрямления кораблей был введен в действие.

Натурные испытания на эсминце “Сообразительный”, проведенные в 1949г. с целью исследования воздействия ветрового крена на корабль, открыли большой цикл экспериментальных работ по изучению этой проблемы, и к 1953г. была создана теория динамической остойчивости. Наиболее существенный вклад в эту работу внес сотрудник ЦНИИ им.А.Н.Крылова Г.А.Фирсов.

Результаты исследований в области остойчивости и непотопляемости кораблей вошли в требования ВМФ к проектированию, изданные впервые в 1952г. Нормирование остойчивости корабля исходило из заданной интенсивности ветра и качки, а непотопляемости - по заданному количеству затопленных отсеков, параметров посадки и остойчивости при этом.

Применительно к подводным лодкам различают надводную и подводную непотопляемость. На первом этапе (до начала 60-х годов) нормирование надводной непотопляемости осуществлялось только по углу аварийного статического дифферента, величина которого была назначена без особых обоснований (при единственном требовании: отсутствии каких-либо серьезных последствий для вооружения и технических средств подводной лодки). Численные оценки дифферента определялись по диаграммам, предложенным специалистами ЦКБ-18 Д.Л.Гармашем А.В.Базилевичем.

Исследования продольной остойчивости кит сгонных и шпигатных подводных лодок, выполненные С.И.Крыловым (специалист 1-гоЦНИИМО), показали, что не дифферент, а запас продольной остойчивости является решающим фактором при оценке безопасности положения аварийной подводной лодки (ПЛ). Поэтому нормирование было предложено производить не только по величине аварийного статического дифферента, но и по максимальному плечу диаграммы продольной статической остойчивости. Влияние на непотопляемость подводной лодки морского волнения не рассматривалось и не учитывалось Возросшие скорости кораблей, увеличение глубины погружения ПЛ потребовали более углубленного анализа требований, предъявляемых к их остойчивости и непотопляемости. Были разработаны “Общие правила восстановления остойчивости и спрямления поврежденного корабля” и макеты корабельной документации по непотопляемости для надводных кораблей и подводных лодок.

Исследовательские работы по изучению ветрового крена позволили в 1958г. создать методику расчета предельной скорости ветра, выдерживаемой кораблем при его движении на волнении, что дало возможность перейти к нормированию остойчивости корабля не по давлению ветра, а по его скорости. В это же время сотрудниками ЦНИИ им.А.Н.Крылова решалась задача о действии на корабль воздушной ударной волны от атомного взрыва, что дало возможность разработать методику расчета крена корабля в этих условиях.

Несмотря на широкий комплекс теоретических и экспериментальных исследований непотопляемости подводных лодок, их создатели до начала 70-х годов не обращали должного внимания на повышенную опасность поведения бескингстонных лодок при авариях, связанных с поступлением воды в прочный корпус при волнении моря. Специальных требований в этом случае к проектировщикам не выдвигалось. Позже были сформулированы требования к надводной непотопляемости, которые учитывали как затопление шпигатных ЦГБ от воздействия морского волнения, так и влияния качки самой подводной лодки.

При создании подводных лодок с малым запасом плавучести выявилось, что требования по непотопляемости к ПЛ двухкорпусного типа не могут быть в полном объеме применены к ПЛ однокорпусной архитектуры. Поэтому 1-й ЦНИИ МО в конце 80-х годов разработал новую концепцию обеспечения надводной и подводной непотопляемости, которая учитывала их взаимное влияние друг на друга. Одновременно было выдвинуто требование к обязательному оборудованию кингстонами однокорпусных подводных лодок и концевых ЦГБ на двухкорпусных лодках.

Начиная с 50-х годов проводились исследования по созданию автоматизированных систем, обеспечивающих работу технических средств по борьбе за живучесть и непотопляемость аварийной ПЛ. Такие системы были затем созданы и внедрены.

Особое внимание обращалось на конструктивное обеспечение запасов плавучести и остойчивости, автоматизацию расчетов непотопляемости. В решении последней задачи активное участие приняли специалисты 1-гоЦНИИМО, ЦНИИ им.А.Н.Крылова и НПО “Аврора”. Специалисты 1-гоЦНИИМО являлись, как правило, не только инициаторами, но и непосредственными исполнителями большей части исследований в области непотопляемости кораблей и подводных лодок, разработчиками ряда методических материалов и монографий (академик Н.С. Соломенко, С.И. Крылов, Ю.И. Кузнецов и Л.Ю. Худяков).

Мореходность

Опыт войны, повышение требований к перспективным проектам кораблей и анализ возможности их использования в различных погодных условиях ставили перед отечественными учеными проблему дальнейшего совершенствования мореходных качеств кораблей.

Нужны были более современная теория, надлежащая экспериментальная база, систематические испытания моделей и натурные испытания, позволяющие проверить возможности корабля в море.

В ЦАГИ им. Н.Е. Жуковского и ЦНИИ им.академикаА.Н.Крылова были проведены испытания в бассейне серии моделей эсминца с различными обводами на различных скоростях и волнении. Это позволило создать один из лучших, с точки зрения мореходности, корабль в нашей стране - эскадренный миноносец проекта 56. Его корпус до сих пор служит прототипом для современных кораблей. Вершиной проверки стали расширенные мореходные испытания этого корабля в море, которые подтвердили правильность выбранного пути.

В ЦНИИ им.академикаА.Н.Крылова уделялось серьезное внимание развитию экспериментальных средств изучения мореходности. Под руководством Г.А.Фирсова создан отечественный волнопродуктор в старейшем опытовом бассейне. Это позволило приступить к экспериментальным исследованиям качки на волнении и связанных с нею явлений. Программа предусматривала испытания большой серии моделей на предмет выявления оптимальных коэффициентов и геометрических соотношений элементов корпуса корабля с точки зрения дополнительного сопротивления, заливаемости и оголения днища.

В начале 50-х годов усилия специалистов 1-гоЦНИИМО, ЦНИИ им.академикаА.Н.Крылова, НПО “Аврора” (А.Н.Шмырев, Г.А.Фирсов, Г.М.Хорошанский, В.А.Мореншильд, В.Б.Терезова и другие) были сосредоточены на исследованиях, натурных проверках успокоителей качки корабля, их внедрении и совершенствовании. Этими работами определялась эффективность различных систем успокоителей качки, законов управления ими, оценена надежность конструкций приводов и наметилось направление дальнейших работ. Добившись высоких гидродинамических качеств управляемых бортовых рулей, на боевых кораблях удалось достичь существенного снижения бортовой качки при сильном волнении моря.


Случайные файлы

Файл
14857-1.rtf
104505.rtf
38606.rtf
179713.rtf
2874-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.