Планеты-гиганты (727)

Посмотреть архив целиком







РЕФЕРАТ


ПО АСТРОНОМИИ


НА ТЕМУ:




"Планеты-гиганты"










Работу выполнил ученик 11 "Б" класса

средней школы № 4

Фомин Максим


Проверила Типтярева В. В.








Мытищи, 2001 год.

План


  1. Планеты-гиганты

  2. Отличие планет-гигантов от планет земной группы

  3. Юпитер

    • Общая характеристика

    • Атмосфера

    • Кольцо Юпитера

    • Внутренние и внешние спутники Юпитера

  1. Сатурн

    • Атмосфера и облачный слой

    • Магнитные свойства Сатурна

    • Кольца

    • Спутники Сатурна

  1. Уран

    • Общие сведения

    • История открытия

    • Особенности вращения Урана

    • Химический состав, физические условия и строение Урана

    • Кольца Урана

    • .Магнитосфера

    • Спутники Урана

  1. Нептун

    • Общие сведения

    • История открытия

    • Химический состав, физические условия и внутреннее строение

    • Спутники Нептуна

    • Кольца Нептуна

    • Магнитосфера

7. Список использованной литературы


ПЛАНЕТЫ-ГИГАНТЫ


Юпитер, Сатурн, Уран и Нептун представляют юпитерову группу планет, или группу планет-гигантов, хотя их большие диаметры не единственная черта, отличающая эти планеты от планет земной группы. Планеты-гиганты имеют небольшую плотность, краткий период су­точного вращения и, следовательно, значительное сжа­тие у полюсов; их видимые поверхности хорошо отража­ют, или, иначе говоря, рассеивают солнечные лучи.

Уже довольно давно установили, что атмосферы планет-гигантов состоят из метана, аммиака, водорода, гелия. Полосы поглощения метана и аммиака в спектрах больших планет видны в огромном количестве. Причем с переходом от Юпитера к Нептуну метановые полосы постепенно усиливаются, а полосы аммиака слабеют. Основная часть атмосфер планет-гигантов заполнена густыми облаками, над которыми простирается доволь­но прозрачный газовый слой, где «плавают» мелкие частицы, вероятно, кристаллики замерзших аммиака и метана.

Вполне естественно, что среди планет-гигантов луч­ше всего изучены две ближайшие к нам Юпитер и Сатурн.

Поскольку Уран и Нептун сейчас не привлекают к себе особенного внимания ученых, остановимся более подробно на Юпитере и Сатурне. К тому же значитель­ная часть вопросов, которые можно решить в связи с описанием Юпитера и Сатурна, относится также и к Нептуну.

Юпитер является одной из наиболее удивительных планет Солнечной системы, и мы уделяем ему значитель­но больше внимания, чем Сатурну. Необычайным в этой планете является не ее полосатое тело с довольно быстрым перемещением темных полос и изменением их ширины и не огромное красное пятно, диаметр которого около 60 тыс. км., изменяющее время от времени свой цвет и яркость, и, наконец, не его «господствующее» по размеру и массе положение в планетной семье. Необычайное за­ключается в том, что Юпитер, как показали радио­астрономические наблюдения, является источником не только теплового, а и так называемого нетеплового ра­диоизлучения. Вообще для планет, которым присущи спокойные процессы, нетепловое радиоизлучение явля­ется совсем неожиданным.

То, что Венера, Марс, Юпитер и Сатурн являются источниками теплового радиоизлучения, теперь твер­до установлено и не вызывает у ученых никакого сомнения. Это радиоизлучение целиком совпадает с тепловым излучением планет и является «остатком», а точнеенизкочастотным «хвостом» теплового спектра нагретого тела. Поскольку механизм теплового радио­излучения хорошо известен, такие наблюдения позво­ляют измерять температуру планет. Тепловое радиоиз­лучение регистрируется с помощью радиотелескопов сантиметрового диапазона. Уже первые наблюдения Юпитера на волне 3 см дали температуру радиоизлучения такую же, как и радиометрические наблюдения в ин­фракрасных лучах. В среднем эта температура составля­ет около– 150°С. Но случается, что отклонения от этой средней температуры достигают 50–70, а иногда 140°С, как, например, в апреле мае 1958 г. К сожалению, пока не удалось выяснить, связаны ли эти отклонения радио­излучения, наблюдаемые на одной и той же волне, с вращением планеты. И дело тут, очевидно, не в том, что угловой диаметр Юпитера в два раза меньше наи­лучшей разрешающей способности крупнейших радиоте­лескопов и что, следовательно, невозможно наблюдать отдельные части поверхности. Существующие наблюде­ния еще очень немногочисленны для того, чтобы отве­тить на эти вопросы.

Что касается затруднений, связанных с низкой раз­решающей способностью радиотелескопов, то в отноше­нии Юпитера можно попробовать их обойти. Нужно только надежно установить на основании наблюдений период аномального радиоизлучения, а потом сравнить его с периодом вращения отдельных зон Юпитера. Вспомним, что период 9 час. 50 мин., это период вращения его эквато­риальной зоны. Период для зон умеренных широт на 5 – 6 мин. больший (вообще на поверхности Юпитера на­считывается до 11 течений с разными периодами).

Таким образом, дальнейшие наблюдения могут привести нас к окончательному результату. Вопрос о связи аномального радиоизлучения Юпитера с периодом его вращения имеет немаловажное значение. Если, напри­мер, выяснится, что источник этого излучения не связан с поверхностью Юпитера, то возникнет необходимость в более старательных поисках его связи с солнечной ак­тивностью.

Не так давно сотрудники Калифорнийского техноло­гического института Ракхакришнан и Робертс наблюда­ли радиоизлучения Юпитера на дециметровых волнах (31 см). Они использовали интерферометр с двумя пара­болическими зеркалами. Это позволило им разделить угловые размеры источника, который представляет со­бой кольцо в плоскости экватора Юпитера, диаметром около трех диаметров планеты. Температура Юпитера, которую определили на дециметровых волнах, оказалась слишком высокой для того, чтобы можно было считать природу источника этого радиоизлучения тепловой. Оче­видно, тут мы имеем дело с излучением, происходящим от заряженных частиц, захваченных магнитным полем Юпитера, а также сконцентрированных вблизи планеты благодаря значительному гравитационному полю.

Итак, радиоастрономические наблюдения стали мощ­ным способом исследования физических условий в атмо­сфере Юпитера.

Мы кратко рассказали о двух видах радиоизлучения Юпитера. Это, во-первых, главным образом тепловое ра­диоизлучение атмосферы, которое наблюдается на санти­метровых волнах. Во-вторых, радиоизлучение на деци­метровых волнах, имеющее, по всей вероятности, нетеп­ловую природу.

Остановимся кратко на третьем виде радиоизлучения Юпитера, которое, как упоминалось выше, является не­обычным для планет. Этот вид радиоизлучения имеет также нетепловую природу и регистрируется на радио­волнах длиной в несколько десятков метров.

Ученым известны интенсивные шумовые бури и всплески «возмущенного» Солнца. Другой хорошо из­вестный источник такого радиоизлучения это так называемая Крабовидная туманность. Согласно пред­ставлению о физических условиях в атмосферах и на поверхностях планет, которое существовало до 1955 г., никто не надеялся, что хотя бы одна из планет в состоя­нии «дышать» по образцу разных по природе объектовСолнца или Крабовидной туманности. Поэтому не удиви­тельно, что когда в 1955 г. наблюдатели за Крабовидной туманностью зарегистрировали дискретный источник радиоизлучения переменной интенсивности, они не сразу решились отнести его на счет Юпитера. Но никакого дру­гого объекта в этом направлении не было обнаружено, поэтому всю «вину» за возникновение довольно значи­тельного радиоизлучения в конце концов возложили на Юпитер.

Характерной особенностью излучения Юпитера яв­ляется то, что радиовсплески длятся недолго (0,5 – 1,5 сек.). Поэтому в поисках механизма радиоволн в этом случае приходится исходить из предположения либо о дис­кретном характере источника (подобного разрядам), либо о довольно узкой направленности излучения, если источник действует непрерывно. Одну из возможных причин происхождения радиовсплесков Юпитера объяс­няла гипотеза, согласно которой в атмосфере плане­ты возникают электрические разряды, напоминающие молнию. Но позднее выяснилось, что для образования столь интенсивных радиовсплесков Юпитера мощность разрядов должна быть почти в миллиард раз большей, чем на Земле. Это значит, что, если радиоизлучение Юпи­тера возникает благодаря электрическим разрядам, то последние должны носить совершенно иной характер, чем возникающие во время грозы на Земле. Из других гипо­тез заслуживает внимания предположение, что Юпитер окружен ионосферой. В этом случае источником возбуж­дения ионизованного газа с частотами 1 – 25 мгц могут быть ударные волны. Для того чтобы такая модель согла­совалась с периодическими кратковременными радио­всплесками, следует сделать предположение о том, что ра­диоизлучение выходит в мировое пространство в грани­цах конуса, вершина которого совпадает с положением источника, а угол у вершины составляет около 40°. Не исключено также, что ударные волны вызываются про­цессами, происходящими на поверхности планеты, или конкретнее, что тут мы имеем дело с проявлением вулка­нической деятельности. В связи с этим необходимо пере­смотреть модель внутреннего строения планет-гигантов. Что же касается окончательного выяснения механизма происхождения низкочастотного радиоизлучения Юпи­тера, то ответ на этот вопрос следует отнести к будуще­му. Теперь же можно сказать лишь то, что источники этого излучения на основании наблюдений в течение восьми лет не изменили своего положения на Юпитере. Следовательно, можно думать, что они связаны с по­верхностью планеты.

Таким образом, радионаблюдения Юпитера за по­следнее время стали одним из наиболее эффективных методов изучения этой планеты. И хотя, как это часто случается в начале нового этапа исследований, толко­вание результатов радионаблюдений Юпитера связано с большими трудностями, мнение в целом о нем как о холодной и «спокойной» планете довольно резко изме­нилось.


Случайные файлы

Файл
102896.rtf
7773.rtf
168878.rtf
164074.rtf
6979-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.