Билет №19

1Вывести ф-лу Грина для односвязной обл.

Пусть на плоскости Oxy задана односвязная область D, ограниченная кусочно-гладким контуром C. На множестве определены непрерывные функции и , имеющие непрерывные частные производные. Тогда , при этом контур С обходится так, что область D остаётся слева.

Д
ок-во.
1. Пусть D - простая область. Докажем сначала, что . Опишем D неравенствами Тогда . Если контур включает вертикальные участки, такие как EF, то на этих участках dx= 0, поэтому ,

Равенство док-ся точно также: . Суммируя равенства и , получим формулу Грина
















































Билет №20

1Вывести ф-лу Грина для многосвязной обл.

Пусть теперь D многосвязная на плоскости Oxy. Граница многосвязной области состоит из нескольких связных частей, не имеющих общих точек. Рассмотрим случай, когда граница области D (на рисунке область заштрихована) состоит из внешнего контура С и внутренних контуров С1 и С2. Соединим контур С разрезом FM с контуром С1, разрезом BG - с контуром С2. (Под словами "соединим разрезом BG " подразумевается то, что мы удалим из D отрезок BG). Область с границей односвязна, поэтому для неё справедлива формула Грина:

. Двойные интегралы по областям D и равны (площадь разрезов равна нулю); в криволинейный интеграл по кусочно-гладкой кривой интегралы по разрезам входят с противоположными знаками ( и , например) и поэтому взаимно уничтожаются, поэтому оказывается справедлива теорема Грина для многосвязной области: пусть на плоскости Oxy дана многосвязная область D с границей . На множестве определены непрерывные функции и , имеющие непрерывные частные производные. Тогда , при этом каждая часть полной границы обходится так, что область D остаётся слева.






































































































































































































































































































  1. Радиус и интервал сходимости.

Из теоремы Абеля следует, что существует такое число R (возможно, ) такое, что при степенной ряд сходится, при ряд расходится. Действительно, пусть в точке ряд сходится, в точке ряд расходится. Рассмотрим точку