Билет №16

1. Вывести формулы для вычисления криволинейного интеграла 1-го рода по плоской кривой, заданной в декартовой и полярной системах координат.

Определение криволинейного интеграла 1го рода. Пусть в пространстве переменных x,y,z задана кусочно-гладкая кривая , на которой определена функция f(x,y,z). Разобьём кривую точками на частей, на каждой из дуг выберем произвольную точку , найдём и длину дуги , и составим интегральную сумму . Если существует предел последовательности интегральных сумм при , не зависящий ни от способа разбиения кривой на дуги , ни от выбора точек , то функция f(x,y,z) называется интегрируемой по кривой , а значение этого предела называется криволинейным интегралом первого рода, или криволинейным интегралом по длине дуги от функции f(x,y,z) по кривой , и обозначается (или ).


Вычисление криволинейного интеграла первого рода. Примеры. Пусть кривая задана параметрическими уравнениями , где - непрерывно дифференцируемые функции, и пусть точкам , которые задают разбиение кривой, соответствуют значения параметра , т.е. . Тогда (см. раздел 13.3. Вычисление длин кривых) . По теореме о среднем, существует точка такая, что . Выберем точки , получающиеся при этом значении параметра: . Тогда интегральная сумма для криволинейного интеграла будет равна интегральной сумме для определенного интеграла . Так как , то, переходя к пределу при в равенстве , получим

.

Примеры. 1. Вычислить , где - один виток спирали

Здесь переход к определённому интегралу проблем не вызывает: находим , и .









Билет №17

1. Определение, мех смысл и свойства криволинейного интеграла 2-го рода. Привести примеры.

Определение криволинейного интеграла 2ого рода. Пусть в пространстве Oxyz дана кусочно-гладкая кривая , на которой определена функция . Разобьём кривую точками на частей, на каждой из дуг выберем произвольную точку , найдём и проекцию дуги на ось Ох, и составим интегральную сумму