Билет №4

1. Замена переменных в двойном интеграле. Сформулировать теорему и привести пример вычисления двойного интеграла в полярной системе координат.

Теорема о замене переменных в двойном интеграле. Пусть на плоскости Ouv задана область G, и пусть отображение преобразует эту область в область D на плоскости Oxy. Будем считать, что отображение F задаётся функциями . Пусть: 1). F взаимно однозначно отображает G на D; 2). функции x(u,v), y(u,v) непрерывно дифференцируемы на G (имеют непрерывные частные производные); 3). якобиан не обращается в нуль на G. Докажем, что в этих предположениях Двойной интеграл в полярных координатах. Нам придётся применять эту формулу, в основном, для перехода к полярным координатам. Роль переменных u и v будут играть r и . Как известно, . Вычислим якобиан: , следовательно, . Двойной интеграл в координатах r, вычисляется также как и в координатах x,y, переходом к двухкратному, при этом внешний обычно берут по . Если область D описывается как , то . Естественно, если - кусочные функции, то внешний интеграл разбивается на несколько слагаемых.


















































Билет №5

1. Геометрические и механические приложения двойного интеграла.

Геометрический смысл двойного интеграла. Геометрический смысл каждого слагаемого интегральной суммы: если , то - объём прямого цилиндра с основанием высоты ; вся интегральная сумма - сумма объёмов таких цилиндров, т.е. объём некоторого ступенчатого тела (высота ступеньки, расположенной над подобластью , равна ). Когда , это ступенчатое тело становится всё ближе к изображенному на рисунке телу, ограниченному снизу областью , сверху - поверхностью , с цилиндрической боковой поверхностью, направляющей которой является граница области , а образующие параллельны оси . Двойной интеграл равен объёму этого тела.

Механические приложения двойного интеграла должны решит. Будем считать, что D - неоднородная плоская пластина с поверхностной плотностью материала в точке Р равной . В механике определяется так. Точка Р окружается малой областью S, находится масса и площадь этой области (площадь тоже будем обозначать буквой S), и . Для нахождения массы по заданной плотности мы ь обратную задачу. Разобьём D на малые подобласти , в каждой из подобластей выберем произвольную точку , и, считая что в пределах плотность постоянна и равна , получим, что масса приближённо есть , а масса всей пластины . Это - интегральная сумма, при уменьшении точность приближения увеличивается, и в пределе