Билет №26

1. Формулы для вычисления поверхностного интеграла 2го рода. Вывод и примеры

Пусть поверхность взаимно однозначно проецируется в область на плоскости Оху. В этом случае имеет одинаковый знак во всех точках поверхности. Именно, , если рассматривается верхняя сторона поверхности, и , если рассматривается нижняя сторона. Поэтому для верхней стороны все слагаемые в интегральной сумме должны браться со знаком "+", и сумма будет иметь вид . Если поверхность задана уравнением , , то эта сумма равна . В последней сумме легко увидеть интегральную сумму для двойного интеграла . Переход к пределу при (при этом и ) даст

. Напомню, что эта формула получена для верхней стороны поверхности. Если выбрана нижняя сторона, то все слагаемые в интегральной сумме должны браться со знаком "-", и интегральная сумма будет иметь вид . Рассуждая, как и для верхней стороны, получим, что в этом случае , где знак "+" берётся для верхней стороны поверхности, знак "-" - для нижней стороны.

Аналогично изложенному, для других интегралов: , если поверхность однозначно проецируется в область на плоскости Oyz, при этом знак "+" берётся для "передней" стороны поверхности (где ), для "задней" стороны, где , берётся знак - если поверхность однозначно проецируется в область на плоскость Oхz, знак "+" берётся для "правой" стороны поверхности (где ), для "левой" стороны, где , берётся знак "-". Как и для поверхностного интеграла первого рода, если проецирование не взаимно однозначно, поверхность разбивается на части, кот проецируются однозначно.
































Билет №27

1 Сформулировать теорему Стокса. Объяснить физический смысл ротора и циркуляции.

Теорема Стокса. Пусть в пространственной области V задано гладкое векторное поле

(M) и - незамкнутая кусочно-гладкая поверхность, ограниченная контуром С. Единичный вектор нормали выбирается так, что с его конца направление обхода С видно совершающимся против часовой стрелки. Тогда циркуляция поля по контуру С равна потоку ротора этого поля через поверхность : .

Приведённую ф-лу наз ф-лой Стокса в векторной форме. В координат форме формула Стокса имеет вид

Мы примем эту формулу без доказательства. Инвариантное определение ротора. Пусть . Возьмём малую плоскую площадку , ограниченную контуром С. По теореме Стокса циркуляция по С равна . Считая, что мало меняется на , и что поверхностный интеграл равен , получим . Будем теперь крутить площадку вокруг точки М, при этом циркуляция меняется вместе с