Билет 30.

1. Оператор Гамильтона. Запись дифференциальных операций векторного анализа с помощью оператора Гамильтона.

для обозначения градиента мы часто будем применять введённый Гамильтоном оператор ("набла"). Этот вектор-оператор определяется как . Если формальное произведение понимать как , то , т.е. произведение вектора набла на скаляр u(M) даёт значение градиента поля u в точке M

Дивергенция векторного поля.

Пусть в некоторой системе координат . Скалярная величина (скалярное поле) называется дивергенцией поля в точке М и обозначается : . С помощью оператора набла дивергенция определяется как скалярное произведение

Ротор векторного поля. Ротором векторного поля (M) в точке называется векторная величина (векторное поле) . Запомнить эту формулу очень легко, если выразить через оператор Гамильтона набла: равен векторному произведению . Действительно, . Если теперь раскрыть этот определитель по первой строке, получим

.








































Билет22.

1. Векторные линии векторного поля, их Д.У.

Векторные линии. Так как вектор M) определяется длиной и направлением в пространстве, задание в области V поля (M) равносильно заданию в V полей длин и направлений. Геометрической характеристикой, определяющей в V поле направлений, служит совокупность векторных линий.

Определение. Векторной линией поля (M) называется любая линия, которая в каждой своей точке М касается вектора (M).

В силовой интерпретации поля векторными линиями являются силовые линии поля, в гидродинамической - векторные линии есть траектории, по которым движутся частицы жидкости (линии тока).

Получим дифференциальные уравнения векторных линий в декартовой системе координат. Пусть векторная линия определяется векторным уравнением . Тогда касательный вектор к этой линии в любой точке должен быть коллинеарен полю, т.е.

.

Эта записанная в симметричной форме система из трёх уравнений первого порядка и определяет векторные линии. Так как функции P, Q, R одновременно не обращаются в нуль, то в любой точке одна из них отлична от нуля. Пусть, например, в точке . Тогда систему можно записать в виде . Функции P, Q, R непрерывно дифференцируемы, поэтому для последней системы выполняются условия теоремы существования и единственности задачи Коши с начальными условиями . Следовательно, через точку М0 проходит, и при том единственная, интегральная кривая системы, которая и будет векторной линией поля.

Определение потенциального поля. Векторное поле (M) называется потенциальным в области V, если существует такое скалярное поле , что (M) для . Поле называется потенциалом поля (M).

Свойства потенциального поля.

Потенциал определён с точностью до произвольной постоянной ().

Разность потенциалов в двух точках определена однозначно.