Лекции Гордина (Числовые Ряды2)

Посмотреть архив целиком

18.1.4. Знакопеременные ряды. Так мы будем называть ряды, которые содержат бесконечные множества как положительных, так и отрицательных членов. Естественно попытаться свести исследование сходимости таких рядов к исследованию сходимости рядов с положительными членами, для которых имеются рассмотренные выше тонкие признаки сходимости, поэтому введём понятие абсолютной сходимости.

18.1.4.1. Абсолютная и условная сходимость числовых рядов. Рассмотрим, вместе с рядом , ряд, составленный из модулей членов ряда (А): . Докажем теорему: если сходится ряд (|A|), то сходится исходный ряд (А).

Доказательство. Пусть сходится ряд (|A|). Это – сходящийся ряд, поэтому множество его частичных сумм , ограничено. В частичной сумме исходного ряда отделим множества неотрицательных и отрицательных членов; неотрицательным членам припишем индекс , у отрицательных членов вынесем знак за скобку и их модулям припишем индекс : ; здесь символом обозначена сумма входящих в положительных членов, обозначает сумму модулей входящих в отрицательных членов, . Итак, . Очевидно, что . - ограниченное множество, поэтому . Но , . Суммы тоже возрастают с ростом n и ограничены сверху, поэтому существуют конечные пределы . Но , поэтому существует конечный предел , т.е. исходный ряд (А) сходится, что и требовалось доказать.

Определение. Ряд называется абсолютно сходящимся, если сходится ряд абсолютных величин его членов. Если ряд сходится, а ряд расходится, то ряд называется условно сходящимся.

Доказанная теорема сводит исследование некоторых знакопеременных рядов к положительным рядам. Для знакопеременных рядов определённой структуры - знакочередующихся рядов - также существует достаточный признак сходимости.

18.1.4.2. Знакочередующиеся ряды.

Определение. Знакочередующимися называются ряды, члены которых поочерёдно то неотрицательны, то отрицательны.

Согласно этому определению, структура знакопеременных рядов такова:

, или , где все . Мы будем рассматривать первую из этих форм; вторая сводится к первой выносом знака за сумму.

Достаточный признак сходимости знакочередующегося ряда (признак Лейбница). Если

1. Последовательность, составленная из модулей членов знакочередующегося ряда, монотонно убывает, т.е. ;

2. Выполняется необходимый признак сходимости ряда, т.е. ,

то ряд сходится. Его сумма по абсолютной величине не превосходит абсолютную величину первого члена.

Доказательство. Рассмотрим последовательность чётных частичных сумм ряда. Представим эту сумму в виде . Из первого условия теоремы следует, что суммы в круглых скобках неотрицательны, поэтому последовательность монотонно возрастает с ростом n. С другой стороны, , т.е. эта последовательность ограничена сверху величиной