Проект червячного редуктора (126294)

Посмотреть архив целиком











КУРСОВОЙ ПРОЕКТ


НА ТЕМУ:

«ПРОЕКТ ЧЕРВЯЧНОГО РЕДУКТОРА»















Днепропетровск 2010


Введение


Курсовой проект – самостоятельная конструкторская работа. При выполнении проекта нужно проявить максимум инициативы и самостоятельности.

Цель курсового проекта – углубить теоретические и практические навыки и знания, полученные в процессе обучения, а также закрепить необходимые навыки конструирования, расчета и эксплуатации червячного редуктора.

В данном курсовом проекте необходимо решить следующие задачи:

1. Спроектировать 2 червячные передачи на 5 kH*м на выходном валу.

2. Расчет на прочность.

3. Выбор подшипники из условия ТСЛ =10000 часов.



  1. Назначение и область применения привода


Редуктором называют механизм, состоящий из зубчатых или червячных передач, выполненный в виде отдельного агрегата и служащий для передачи мощности от двигателя к рабочей машине.

Назначение редуктора – понижение угловой скорости и повышение вращающего момента ведомого вала по сравнению с валом ведущим.

Редуктор состоит из литого чугунного корпуса, в котором помещены элементы передачи – червяк, червячное колесо, подшипники, вал и пр. Входной вал редуктора посредством зубчато-ременной передачи соединяется с двигателем, выходной посредством муфты – с конвейером.

Червячные редукторы применяют для передачи движения между валами, оси которых перекрещиваются.

Так как КПД червячных редукторов невысок, то для передачи больших мощностей в установках, работающих непрерывно, проектировать их нецелесообразно. Практически червячные редукторы применяют для передачи мощности, как правило, до 45 кВт и в виде исключения до 150 кВт.




2. Расчетная часть


2.1 Спроектировать 2 червячные передачи на 5kH*м на выходном валу


Исходные данные для расчета: выходная мощность – =5 кВт; выходная частота вращения вала рабочей машины – =65 об/мин; нагрузка постоянная; долговечность привода – 10000 часов.


Рис. 1 – кинематическая схема привода: 1 – двигатель; 2 – клиноременная передача; 3 – червячная передача; 4 – муфта


Определение требуемой мощности электродвигателя


(2.1)


где: - коэффициент полезного действия (КПД) общий.


х (2.2)


где [3, табл. 2.2]: - КПД ременной передачи

- КПД червячной передачи

- КПД подшипников

- КПД муфты

Определяем частоты вращения и угловые скорости валов.

- угловая скорость двигателя;

- число оборотов быстроходного вала;

- угловая скорость быстроходного вала;

- число оборотов тихоходного вала;

угловая скорость тихоходного вала.

Определение мощностей и передаваемых крутящих моментов валов

Определяем мощности на валах

Расчет ведем по [3]

Мощность двигателя -

Определяем мощность на быстроходном валу


(3.1)


Определяем мощность на тихоходном валу


(3.2)


Определяем вращающие моменты на валах

Определяем вращающие моменты на валах двигателя, быстроходном и тихоходном валах по формуле


(3.3)


Расчет червячной передачи

Исходные данные

Выбор материала червяка и червячного колеса

Для червяка с учетом мощности передачи выбираем [1, c. 211] сталь 45 с закалкой до твердости не менее HRC 45 и последующим шлифованием.

Марка материала червячного колеса зависит от скорости скольжения


(4.1)


м/с

Для венца червячного колеса примем бронзу БрА9Ж3Л, отлитую в кокиль.

Предварительный расчет передачи

Определяем допускаемое контактное напряжение [1]:


н] =КHLСv0,9в, (4.2)


где Сv – коэффициент, учитывающий износ материалов, для Vs=0,75 он равен 1,21

в, – предел прочности при растяжении, для БрА9Ж3Л в,=500

КHL – коэффициент долговечности


КHL =, (4.3)


где N=5732Lh, (4.4)


Lhсрок службы привода, по условию Lh=10000 ч

N=573х1,03х10000=5901900

Вычисляем по (4.3):

КHL =

КHL =1.068

н] =1.068х1,21х500=646

Число витков червяка Z1 принимаем в зависимости от передаточного числа при U = 17 принимаем Z1 = 2

Число зубьев червячного колеса Z2 = Z1 x U = 2 x 17 = 34

Принимаем предварительно коэффициент диаметра червяка q = 10;

Коэффициент нагрузки К = 1,2; [1]

Определяем межосевое расстояние [1, c. 61]


(4.5)



Вычисляем модуль


(4.6)


Принимаем по ГОСТ2144–76 (таблица 4.1 и 4.2) стандартные значения

m = 4.5

q = 10

Тогда пересчитываем межосевое расстояние по стандартным значениям m, q и Z2:


(4.7)


Принимаем aw = 100 мм.

Расчет геометрических размеров и параметров передачи

Основные размеры червяка.:

Делительный диаметр червяка


(4.8)


Диаметры вершин и впадин витков червяка


(4.9)



(4.10)


Длина нарезной части шлифованного червяка [1]


(4.11)


Принимаем b1=42 мм

Делительный угол подъема г:

г =arctg(z1/q)

г =arctg (4/10)

г = 21 є48’05»

ha=m=4 мм; hf=1,2x m=4,8 мм; c=0,2x m=0,8 мм.

Основные геометрические размеры червячного колеса [1]:

Делительный диаметр червячного колеса


(4.12)


Диаметры вершин и впадин зубьев червячного колеса


(4.13)



(4.14)


Наибольший диаметр червячного колеса


(4.15)


Ширина венца червячного колеса


(4.16)


Принимаем b2=32 мм

Окружная скорость


(4.17)


червяка -

колеса –

Скорость скольжения зубьев [1, формула 4.15]

КПД редуктора с учетом потерь в опорах, потерь на разбрызгивание и перемешивания масла [1, формула 4.14]

Уточняем вращающий момент на валу червячного колеса


(4.18)


По [1, табл. 4.7] выбираем 7-ю степень точности передачи и находим значение коэффициента динамичности Kv = 1,1

Коэффициент неравномерности распределения нагрузки [1, формула 4.26]



В этой формуле коэффициент деформации червяка при q =10 и Z1 =2 [1, табл. 4.6]

При незначительных колебаниях нагрузки вспомогательный коэффициент Х=0,6

Коэффициент нагрузки


Таблица 1. Параметры червячной передачи

Параметр

Колесо

Червяк

m

4.5

z

34

2

ha, мм

4

hf, мм

4,8

с, мм

0,8

d, мм

153

40

dа, мм

162

48

df, мм

142.2

30,4

dаm, мм

168.25

-

b, мм

32

42

г

21є48’05»

V, м/с

0,75

0.75

Vs, м/с

0.8

Ft, Н

6370

138

Fa, Н

138

6370

Fr, Н

4989


2.2 Расчет на прочность


Расчет ведущего вала – червяка

Заменяем вал балкой на опорах в местах подшипников.

Рассматриваем вертикальную плоскость (ось у)

Изгибающий момент от осевой силы Fа будет:


mа=[Faxd/2]:


mа=6370·4010-3/2=127,4Нм.

Определяем реакции в подшипниках в вертикальной плоскости.

1mАу=0

RBy·(a+b)+Fr·a – mа=0

RBy=(Fr·0,093 – mа)/ 0,186=(4989·0,093–127,4)/ 0,186=649,8 Н

Принимаем RBy=650Н

2mВу=0

RАy·(a+b) – Fr·b – mа=0

RАy=(Fr·0,093+ mа)/ 0,186=(4989·0,093+174,5)/ 0,186=2526,2 Н

Принимаем RАy=2526 Н

Проверка:

FКу=0

RАyFr+ RBy=2526–3176+650=0

Назначаем характерные точки 1,2,2’, 3 и 4 и определяем в них изгибающие моменты:

М=0;

М= RАy·а;

М=2526·0,093=235 Нм;

М2’у= Мmа(слева);

М2’у=235–174,5=60,5 Нм;

М=0;

М=0;

Строим эпюру изгибающих моментов Му, Нм.

Рассматриваем горизонтальную плоскость (ось х)

1mАх=0;

Fш·(a+b+с) – RВх·(a+b) – Ft·a=0;

1232·(0,093+0,093+0,067) – RВх·(0,093+0,093) – 138·0,093=0;

RВх=(311,7–12,8)/0,186;

RВх=1606,9Н

RВх1607Н

2mВх=0;

RАх·(a+b)+Ft·b+Fш·с= 0;

RАх=(12,834+82,477)/0,186;

RАх=512,4Н

RАх512Н

Проверка

mКх=0;

RАх+ FtFш+ RВх=-512+138–1232+1607=0


Рис. 2. Эпюры изгибающих и крутящих моментов ведущего вала



Назначаем характерные точки 1,2,2’, 3 и 4 и определяем в них изгибающие моменты:


Случайные файлы

Файл
139220.rtf
12878.rtf
135796.rtf
20366.rtf
63193.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.