Силовой расчёт механизмов (126087)

Посмотреть архив целиком

Содержание


Задание для курсового проектирования

Введение - цели и задачи курсового проектирования

1. Синтез и динамический анализ основного механизма

2. Силовой анализ рычажного механизма

3.Проектирование эвольвентного зубчатого зацепления

4. Синтез кулачкового механизма

Литература


Введение


Курсовой проект по дисциплине «Теория механизмов и машин» состоит из графической части и расчетно-пояснительной записки. Включает в себя четыре основных раздела:

1. Синтез и динамический анализ основного механизма.

2. Силовой анализ рычажного механизма.

3. Проектирование эвольвентного зубчатого зацепления и синтез планетарного механизма.

4. Синтез кулачкового механизма.

В первом разделе курсового проекта выполняется проектирования основного рычажного механизма, рассчитывается момент инерции маховика и определяется истинный закон движения звена приведения.

Во втором разделе рассчитываются силы и моменты инерции, приложенные к звеньям, определяются неизвестные реакции в кинематических парах и уравновешивающий момент.

В третьем разделе проводится расчет геометрических параметров, контрольных размеров, качественных и кинематических характеристик эвольвентного зубчатого зацепления. Проводится оценка спроектированной передачи по всем вышеизложенным параметрам. Исходные данные выбираются в соответствии с рекомендациями ГОСТ 16532-70. Здесь же выполняется синтез планетарного механизма.

В четвертом разделе проекта определяются основные параметры кулачкового механизма, и строится профиль кулачка, обеспечивающий заданный закон движения толкателя.

Графическая часть проекта выполняется на четырех листах формата А1 по разделам в соответствии с ГОСТ 2304-68 и ГОСТ 2302-68.


РАЗДЕЛ I

Синтез и динамический анализ основного механизма.


Целью данного раздела является проектирование основного кривошипно-шатунного механизма, определение длин его звеньев, расчет момента инерции маховика, определение истинного закона движения звена приведения.


    1. По формуле Чебышева определим степень подвижности механизма:



Согласно классификации Артоболевского механизм состоит из: механизма I класса - кривошип ОА, стойка О.

Структурная группа Ассура II класса, II порядка, II вида. - шатун АВ, ползун В; I(0;1) – II2 (2;3) – структурная форма механизма.

В целом механизм является механизмом II класса – по наивысшему.


    1. По заданным исходным данным спроектируем основной кривошипно-шатунный механизм:


м/с;

n1 = об/мин;


Для этого необходимо определить размеры звеньев, найти положения центров тяжести.

1.2.1. Длину кривошипа lОА вычисляем по формуле:


м


      1. Определяем длину шатуна:


м


      1. Определяем масштаб построения:


,


где ОА – отрезок произвольно взятый на чертеже, мм.

Принимаем



      1. Определяем длину шатуна:


мм


1.2.5.Определим положение центра масс шатуна:


м

AS2 =

    1. Вычерчиваем в масштабе диаграмму изменения давления, расположив ось абсцисс параллельно перемещению ползуна и разметив ее в соответствии с положениями, занимаемыми ползуном.



Рассчитываем значения силы Р для каждого положения поршня и заносим в таблицу 1. Для этого определим площадь сечения цилиндра:


;

м2

Н


Значение силы Р Таблица1.

Положения

0

1

2

3

4

5

6

7

8

Р, Н

0

1592

960

17246

17246

3562

0

0

0


1.4 Строим планы скоростей для соответствующих положений механизма. На планах изображены векторы скоростей, центров масс и их проекции на направление сил тяжести.


Построение начинаем с входного звена, т.е. с кривошипа ОА. Из произвольно взятой точки Pv , являющейся полюсом плана скоростей, откладываем в направлении движении кривошипа вектор из Pv в точку А, выбранной произвольно.

Выбираем Pv a= 100 мм.

Определяем положение центра масс шатуна


м.


Определяем отрезок на чертеже


мм

мм,


где abотрезок с плана скоростей , мм.


1.5 Для каждого положения механизма вычислим приведенный момент сил сопротивления , который определяем по методике [1] стр. 8-9.


Используя формулу [1.4] и планы скоростей, определим момент сил для данного механизма.


;


Определим массы звеньев:

5,5кг

,5кг;

кг.

Рассчитываем силы тяжести:

;

H

H

H

Определим моменты движущих сил для всех положений момента и заносим результаты в таблицу 2:



Результаты вычислений приведенного момента сил сопротивления


Таблица 2.

Положение

, Н

0

0

0

0

0

0

0

1

0,6

-1

0,6

-1

0,67

-154

2

1

-1

1

-1

0

-1202

3

0,85

-1

0,85

-1

0,75

-2212

4

0

0

0

0

0

0

5

0,85

-1

0,85

-1

0,75

467

6

1

-1

1

-1

0

12

7

0,6

-1

0,6

-1

0,67

10,2


Строим диаграмму приведенных моментов сил сопротивления в зависимости от угла поворота звена приведения (кривая 1).

Вычисляем масштаб оси абсцисс ():


рад/мм


Определяем масштаб диаграммы приведенных моментов сил сопротивления.


, где

значение из таблицы 2;

произвольно принимаем 100 мм.



    1. Вычислим для полученных положений механизма, значения приведенных моментов инерции звеньев и строим диаграмму приведенного момента инерции всех звеньев в масштабе:


мм


Приведенный момент инерции определим из условия равенства его кинетической энергии, суммарной энергии всех подвижных звеньев механизма по методике [1] стр. 9;10;12 используя формулы (17;18;19) можно записать формулу для нашего случая:


;


Вычислим для всех положений и результаты заносим в таблицу 3:


Приведенный момент инерции.


Таблица 3.

Положение механизма

,

кг·м2

0

0

0

0,67

0,4489

1

1

0,0567

1

0,6

0,36

0,82

0,6724

0,7

0,49

0,129

2

1

1

1

1

0

0

0,2475

3

0,85

0,7225

0,9

0,81

0,7

0,49

0,19

4

0

0

0,67

0,4489

1

1

0,0567

5

0,85

0,7225

0,9

0,81

0,7

0,49

0,19

6

1

1

1

1

0

0

0,2475

7

0,6

0,36

0,82

0,6724

0,7

0,49

0,129


Случайные файлы

Файл
referat.doc
70135.rtf
EX_C.RTF
37035.rtf
162393.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.