Проектирование привода цепного транспортера (125889)

Посмотреть архив целиком

Московский ордена Ленина, ордена Октябрьской Революции

и ордена Трудового Красного Знамени

Государственный Технический Университет имени Н. Э. Баумана






Факультет КМК

Кафедра К3-КФ




Проектирование привода цепного транспортера.





Студент _______________ (Бедняшов Р.В.)

Группа МСХ-62

Консультант _______________ (Комаров И.А.)









г. Калуга 2005


Содержание


2. Кинематическая схема привода ленточного конвейера 4

3. Выбор электродвигателя 5

4. Определение мощности, крутящего момента и частоты вращения каждого вала привода 7

5. Проектный и проверочный расчёт зубчатых передач 9

6. Определение диаметров валов 20

7. Выбор и проверка подшипников качения по динамической грузоподъёмности 21

8. Проверочный расчёт наиболее нагруженного вала на усталостную прочность и жёсткость 23

9. Выбор и расчёт шпоночных соединений 26

10. Литература 28


2. Кинематическая схема привода ленточного конвейера



3. Выбор электродвигателя


  1. Общий коэффициент полезного действия:

- КПД упругой и компенсирующей муфты

- КПД передачи

-КПД звёздочки

- КПД подшипника

  1. Мощность электродвигателя:

кВт

где Ft = 5300 Н – окружное усилие на барабане;

v = 0,68 м/с – скорость цепей транспортёра;

По таблице определяем, что Рэл = 7,5 кВт.

  1. Частота вращения приводного вала:

мин-1,

где n4 – частота вращения приводного вала [мин-1];

мм – диаметр звёздочки;

  1. Частота вращения э/д:

мин-1

где эд – предварительная частота вращения э/д [мин-1];

Uобщ – общее передаточное число;

, где

;

Uт =4

Принимаем nэд = 730 мин-1.

Выбираем тип э/д 4А160S8/730, который имеет следующие параметры: Рэд = 7,5 кВт, nэд = 730 мин-1.


4. Определение мощности, крутящего момента и частоты вращения каждого вала привода


Определим мощности: кВт;

;

;

;

где – мощность на валах редуктора, быстроходного, промежуточного, тихоходного валов и приводного вала, – коэффициенты полезного действия быстроходной и тихоходной ступени, муфты и звёздочки соответственно.

Определим частоту вращения: ;

;

;

;

где – частота вращения на валах редуктора, быстроходного, промежуточного, тихоходного валов и приводном вале, – передаточное число, быстроходной и тихоходной ступеней редуктора соответственно.

Определим крутящие моменты: ;

;

;

где – крутящие моменты на валах редуктора быстроходного, промежуточного, тихоходного и приводного валов .

Результаты расчётов занесём в таблицу 1.


Таблица 1.

Вал

Мощность

Частота вращения

Крутящий момент

1

2,18

750

27,7

2

2,09

172,5

115,76

3

2,01

43,13

444.5

4

1.91

43,13

422,4



5. Проектный и проверочный расчёт зубчатых передач


Расчёт тихоходной ступени редуктора.

Материал колеса и шестерни – сталь 45 улучшение. Таким образом, учитывая, что термообработка зубчатых колёс – улучшение, по таблице 3.1 имеем:

для шестерни: , , ;

для колеса: , , ;

где – твёрдость рабочей поверхности зубьев, и – предел прочности материала на растяжение и предел текучести материала.

Определим коэффициенты приведения на контактную выносливость и на изгибную выносливость по таблице 4.1 лит. 1, учитывая режим работы №0: ; .

Определим число циклов перемены напряжений. Числа циклов перемены напряжений соответствуют длительному пределу выносливости. По графику 4.3 определяем числа циклов на контактную и изгибную выносливость соответственно: , , .

Определим суммарное число циклов перемены напряжений для шестерни и колеса соответственно: , где и – частота вращения шестерни и колеса соответственно; – число вхождений в зацепление зубьев шестерни или колеса соответственно за один его оборот.

Так как , то принимаем .

Так как , то принимаем .

Найдём эквивалентное число циклов перемены напряжений для расчёта на изгибную выносливость: , , где – коэффициенты приведения на изгибную выносливость; – суммарное число циклов перемены напряжений для шестерни или колеса.

Так как , то принимаем .

Так как , то принимаем .

Определим допускаемые напряжения для расчётов на выносливость. По таблице 4.3 находим, что , , , – для шестерни и , , , – для зубчатого колеса,

где и – длительный предел контактной выносливости и коэффициент безопасности; и – длительный предел изгибной выносливости и коэффициент безопасности; Найдём предельные допускаемые контактные и изгибные напряжения: , , , , где – предел текучести материала колеса или шестерни;

Определим допускаемые контактные напряжения и напряжения изгиба при неограниченном ресурсе передачи: , , , , где и – длительный предел контактной выносливости и коэффициент безопасности; и – длительный предел изгибной выносливости и коэффициент безопасности.

Проверим передачу на контактную выносливость и изгибную выносливость: , , , .

Выбираем допускаемое контактное напряжение как меньшее из значений: .

Принимаем

Определим предварительное значение межосевого расстояния:

где ψа = 0,4 – коэффициент ширины тихоходной ступени.

=4– передаточное число ступени редуктора;

= 210.3 МПа – допускаемое контактное напряжение;

=1.04 – коэффициент, учитывающий распределение нагрузки между зубьями, определяем по рис. 6.2;

=422.4Н м– крутящий момент на валу колеса;

коэффициент нагрузки на контактную выносливость, определяется следующим образом.

Найдём коэффициенты нагрузки на контактную и изгибную выносливость по формулам:

и ,

где и – коэффициенты концентрации нагрузки по ширине зубчатого венца;

и – коэффициенты динамической нагрузки (учитывают внутреннюю динамику передачи).

- для прирабатывающихся зубьев при постоянной нагрузке;

Коэффициент определяется по табл. 5.4 в зависимости от вида передачи (в данном случае цилиндрическая косозубая). Находим, что и . Теперь находим значения коэффициентов нагрузки

и .

Принимаем а = 250 мм

Определяем рабочую ширину колеса:

.

Ширина шестерни: .

Вычислим модуль передачи по формуле:

,где =215.7МПа–изгибное напряжение на колесе;, . Тогда . Из стандартного ряда значений по ГОСТ 9563–60 выбираем значение .

Определим минимально возможный угол наклона зуба .

Рассчитываем предварительное суммарное число зубьев: . Округляем это число и получаем .

Определяем действительное значение угла и сравниваем его с минимальным значением:

.

Найдём число зубьев шестерни и колеса , учитывая что минимальное число зубьев для косозубой цилиндрической передачи ; .

Найдём фактическое передаточное число передачи: . Таким образом отклонение фактического передаточного числа данной ступени редуктора от номинального значения .

Проверим зубья колёс на изгибную выносливость. Для колеса получим: где – коэффициент нагрузки при расчёте на изгибную выносливость;

коэффициент, учитывающий распределение нагрузки между зубьями, выбираем по табл. 6.4;

коэффициент, учитывающий форму зуба, находится по табл. 6.2 лит. 1;

коэффициент, учитывающий наклон зуба.

Сравниваем полученное значение напряжения с допускаемым напряжением при расчёте на изгиб зубьев колеса: .

Для шестерни: ,

где и – коэффициенты, учитывающие форму зуба, определяются по табл. 6.2.

Сравним полученное значение напряжения с допускаемым напряжением при расчёте на изгиб зубьев шестерни: .

Определим диаметры делительных окружностей шестерни и колеса соответственно.

, ,

где – модуль зубчатых колёс;

угол наклона зуба;

Вычислим диаметры окружностей вершин зубьев и впадин зубьев .

; ; ; .

Расчёт быстроходной ступени редуктора

Материал колеса и шестерни – сталь 45. Таким образом, учитывая, что термообработка зубчатых колёс и шестерни – улучшение, имеем:

для шестерни:, ;

для колеса:, ;

где – твёрдость рабочей поверхности зубьев, – предел текучести материала.

Определим твёрдость зубьев шестерни и колеса:

;

.

Определим коэффициенты приведения на контактную выносливость и на изгибную выносливость по таблице 4.1., учитывая режим работы №3: ; .

Определим число циклов перемены напряжений.

Определим суммарное число циклов перемены напряжений для шестерни и колеса соответственно:

, ,

где –ресурс передачи; и – частота вращения шестерни и колеса соответственно; ==1 – число вхождений в зацепление зубьев шестерни или колеса соответственно за один его оборот.

Числа циклов перемены напряжений соответствуют длительному пределу выносливости. По графику 4.3. определяем числа циклов на контактную и изгибную выносливость соответственно:

, , .

Определим эквивалентное число циклов перемены напряжений для расчёта на контактную выносливость:


Случайные файлы

Файл
CBRR5497.DOC
14875.rtf
110563.rtf
6182-1.rtf
кср2.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.