Разработка привода цепного транспортера (125336)

Посмотреть архив целиком

Содержание


Введение

1 Кинематический расчёт привода

1.1 Выбор электрического двигателя

1.2 Расчёт кинематических, силовых и энергетических параметров на отдельных валах .

1.3 Расчёт привода в Автоматизированный системах «Восход», «Кинематик».

1.4 Сравнительный анализ результатов и выбор рационального варианта

2 Расчет и проектирование зубчатого редуктора

2.1 Выбор материалов зубчатых колес. Определение допускаемых напряжений

2.2 Проектировочный расчет зубчатых передач и валов.

2.2.1 Проектировочный расчёт быстроходной ступени в системе «Восход».

2.3 Эскизная компоновка редуктора.

2.4 Проверочный расчет зубчатых передач.

2.5 Результаты расчетов напряжений, геометрических параметров выходной ступени с использованием автоматизированных систем расчета «АРМ» и «Восход».

2.6 Расчет (выбор) подшипников и уплотнений

2.6.1 Подшипники выходного вала

2.6.2 Подшипники входного вала

2.6.3 Подшипники промежуточного вала

2.7 Проверочные расчеты валов на прочность, жесткость и колебания

2.8 Результаты расчёта выходного вала в системе «APM WinMachine».

2.9 Расчет и конструирование корпуса и крепежных деталей

2.10 Тепловой расчет и смазка редуктора

3 Расчёт ременной передачи

4 Подбор, проверка и эскизная компоновка муфт

5 Расчет и проектирование тяговой звёздочки

Список используемой литературы



Введение


Целью данного курсового проекта является разработка привода цепного транспортера. Для этого были проделаны необходимые подсчёты с применением справочной литературы, методических указаний и автоматизированных методов выполнения проектно-проверочных расчётов.

Для приведения в движения привода цепного транстпортёра необходим двигатель.

Стандартные асинхронные двигатели переменного тока имеют простую прочную конструкцию и высокую степень защиты. Благодаря этому, даже при длительной эксплуатации в самых сложных условиях они обеспечивают безопасность и надежность приводной системы. Однако в любом случае решающим фактором успеха являются точное знание и соблюдение условий эксплуатации.

Стандартные двигатели переменного тока могут годами работать исправно, не нуждаясь в техническом обслуживании.

Руководствуясь вышесказанным, в начале проекта выбран, с учетом графика нагрузки, асинхронный двигатель 4A100L4Y3, для которого Nном.=4.0(кВт) nном.=1430(об/мин).

Дальнейшей разработкой привода является определение, как передаточного отношения самого привода, так и передаточного отношения редуктора. В свою очередь передаточное отношение редуктора, в соответствии с методическими указаниями, разбивается на передаточное отношение ступеней редуктора.

При проектировочном расчете зубчатых передач определяем межосевое расстояние, модуль и т.д. Для оптимизации зубчатой передачи, а вследствие и редуктора, то есть уменьшения габаритных размеров, нормальное соотношение размеров ступеней редуктора можно варьировать значением модуля, крутящим моментом, передаточным отношением, коэффициентом ширины колеса. В нашем случае будем выбирать минимальные ближайшие, стандартные значения величин.

Ручной расчет ведём только быстроходной ступени, а остальные ступени рассчитываем с применением автоматизированного варианта.

Дальнейшее проектирование сводится к проверочному расчёту зубчатой передачи. Выполняем проверочный расчёт на усталость по контактным напряжениям, проверочный расчёт по напряжениям изгиба, проверочный расчёт на заданную перегрузку.

Для выполнения эскизной компоновки редуктора необходимо знать геометрические параметры элементов. Находим диаметры валов в зависимости от крутящего момента и - допустимое касательное напряжение. Находим диаметры валов, заплечики под колесо и подшипник. Для того, что бы колесо ни скользило по валу и передавало на вал крутящий момент, рассчитываем шпонку. И для того, что бы колесо сидело на валу и при вращении никуда не смещалось, надеваем колесо на вал с натягом, для чего проводим соответствующий расчет.

Для вращения вала с минимальными потерями энергии в опорах, применяются подшипники. Подшипники рассчитываем на статическую Со и динамическую грузоподъемность Сr, для этого определяем реакции опор на действие окружной и радиальной силы, в некоторых случаях также учитывается действие силы от муфты или шкива. Выбираем большую силу реакции опоры, учитывая коэффициент безопасности, требуемый ресурс работы, коэффициент надежности, тип подшипника, температурный коэффициент, коэффициент вращения, и т.д. находим динамическую грузоподъемность. После чего сравниваем расчетную грузоподъемность с табличным значением для данного подшипника. Если расчетная грузоподъемность оказывается меньше табличной, то такой подшипник принимаем, если оказывается больше табличной, то этот подшипник отбраковываем, а рассматриваем подшипник более тяжелой серии.

При проверочном расчете вала определяем два опасных сечения, в которых вал испытывает значительные нагрузки. Выявляем то, которое нагружено больше всего. Проверяем статическую прочность при перегрузках, жёсткость вала, расчёт на колебания. Находим критическую частоту вращения вала. Для нормальной работы необходимо, чтобы вал вращался в докритической области, иначе вся конструкция придет в негодность.

Для уменьшения трения в зубчатом зацеплении необходимы смазочные материалы, в нашем случае масло. Объем масла должен быть такой, чтобы колесо быстроходной ступени было погружено на высоту зуба.

В зависимости от окружной скорости вращения колеса и от в выбирается вязкость масла, а по вязкости выбирается подходящая марка масла.

Для соединения выходного вала с исполнительным органом используем управляемую муфту, которая позволяет скомпенсировать несоосность валов. При ее расчете учитываем к.п.д. привода, частоту вращения, мощность двигателя, крутящий момент на тихоходном валу. В зависимости крутящего момента и диаметра вала из справочника выбираем подходящую муфту.

Для дальнейшей разработки и изготовления редуктора необходимо наглядное представление о нем. Для этого чертятся чертежи, по которым можно точно определить месторасположения каждой детали. По необходимости выполняются местные разрезы, выноски, тем самым улучшают представление о данном участке.

На завершающей стадии проектирования вычерчивается сборочный чертеж, по которому судят о расположении и взаимодействии отдельных элементов привода.

По выполнении проектирования делается анализ всех произведённых действий, рассматриваются желаемые, но не учтённые по техническим причинам параметры.


1 Кинематический расчёт привода


1.1 Выбор электрического двигателя


Определяем мощность на барабане по формуле:


N =F∙V, (1.1)


где F= 5000 Н – усилие на транспортёре;

V = 0.9 м/с – скорость цепи транспортёра.

Данные значения подставляем в формулу (1.1): N=5000∙0.9=4,5 (кВт)

Потребную мощность двигателя определяем по формуле:


, (1.2)


где - суммарный КПД привода (значения берутся из таблицы - в ней КПД передач даны с учётом потерь энергии в опорах валов этих передач на подшипниках качения, т.е. при вычислении суммарного КПД привода, КПД пар подшипников не учитываются), вычисляемый по формуле:


(1.3)


где =- КПД муфты; = - КПД редуктора;

рем.пер.=0.96 - КПД клиноремённой передачи.

Подставляем эти значения в формулу, получаем:



Тогда мощность двигателя равна:


(кВт)


Определяем среднеквадратичную мощность двигателя, используя график нагрузки:


,


где Nn – значение мощностей в определенный момент цикла; t- время цикла.


.


Частоту вращения ведомого вала определяем по формуле:


, (1.4)


где D0 –диаметр тяговой звёздочки, равный


(мм) (1.4а)


где t =100 мм – шаг тяговой звездочки, z =9 – число зубьев на звёздочке.

Данные значения подставляем в формулу (1.4а):



Из формулы (1.4) находим:


nВЫХ(об/мин)


Оцениваем возможное передаточное отношение привода


Uобщ=UрUрем (1.5)


Задаем передаточное отношение ременной передачи: Uрем.=2, передаточное отношение редуктора:


Uр=U23∙U34; (1.5а)


где U23 – передаточное отношение быстроходной ступени редуктора (между валами 2 и 3); U34 – передаточное отношение тихоходной ступени редуктора (между валами 3 и 4).

Назначаем Uр равным 16. Определяем U23 по соотношению [Дунаев П.Ф., стр. 11]. По ряду стандартных значений U23=5, тогда .

Отсюда, по формуле (1.5) определим Uобщ=16∙2=32.

Тогда требуемая частота вращения вала электродвигателя определяется по формуле:


nдв.н= nвых∙Uобщ. = 58,932 = 1884,8 (об/мин)

Nср.кв.дв.дв.н. (1.6)

(1.6а)


Из соотношений (1.6) и (1.6а) выбираем двигатель 4A100L4Y3, для которого Nдв.= 4 (кВт), nдв.= 1430 (об/мин).


1.2 Расчёт кинематических, силовых и энергетических параметров на отдельных валах


Уточняем передаточные отношения:



Определяем U23 по соотношению [Дунаев П.Ф., стр. 11]. По ряду стандартных значений U23=4, тогда .

Определение кинематических, силовых и энергетических параметров на отдельных валах.

На первом валу (быстроходный вал привода):


N1=Nдв.=4 (кВт) n1=nдв.=1430 (об/мин)

.м)


На втором валу (быстроходный вал редуктора):


N2=N1 =4∙0,96=3,84(кВт)

n2==715(об/мин)

.м)


На третьем валу (промежуточный вал редуктора):


N3=N2 =3,84. 0,97=3,72(кВт)

n3==180,6 (об/мин)

.м)


На четвёртом валу (тихоходный вал редуктора):


N4=N3 =3,72∙0,97=3,61(кВт)

n4 ==57,3(об/мин)

.м)


На пятом валу (тихоходный вал привода):


N5 =N4 =0,99∙3,61=3,58(кВт)

n5 ==57,3(об/мин)

.м)


Кинематические, cиловые и энергические параметры элементов привода занесём в таблицу 1.


Таблица 1

Параметры

Обознач.

Разм.

Валы

1

2

3

4

5

Крутящий момент

Т

Н.м

26,5

50,9

188,8

601,7

596,7

Частота вращения

n

Об/мин

1430

715

180,6

57,3

57,3

Угловая скорость

рад/с

151,2

75,6

19,7

6

6

Мощность

N

кВт

4

3,84

3,72

3,61

3,58

Передаточное отношение

U


2

4

3,15

1


1.3 Расчёт привода в Автоматизированный системах «Восход», «Кинематик»


В системе «Восход»

Исходные данные

Цилиндр.горизонтальный соосный редуктор

Мощность тихох.вала привода,квт 4.5

Частота вращения тихох.вала привода,мин-1 58.9

Общее передаточное число привода 32

Перед.число ременной передачи 2

Результаты расчета

Тип выбранного эл./двиг. 4a112m4y3

Мощность выбранного эл./двиг. 5.5 квт

Частота вращения эл./двиг. 1445 мин-1

Действ.перед.число редуктора 12.60

Перед.число быстрох.ступени 4.00

Перед.число тихоходной ступени 3.15

Перед.число ременной передачи 2.00

В системе «Кинематик».

Таблица расчетных значений

Приблизительное общее передаточное отношение

привода Usп=25.20

Общий КПД привода Ns=0.88

Приблизительная мощность двигателя Pдвп=5.14(кВт)

Приблизительная частота вращения вала электродвигателя

ndп=1484(об/мин)

Тип электродвигателя - 4A100L4УЗ

Мощность электpодвигателя Рдв=4.00(кВт)

Частота вpащения вала электpодвигателя nдв=1430(об/мин)

Отношение Тпуск/Тном=2.0

Отношение Тmax/Тном=2.4

Масса электpодвиготеля Мдв=42.0

Разбиение передаточного отношения pедуктоpа

по ступеням

Передаточное отношение быстроходной ступени pедуктоpа Uб=3.55

Передаточное отношение тихоходной ступени pедуктоpа Uт=3.15

Частота вpащения быстpоходного вала пpивода1430.00

Кpутящий момент на быстpоходном валу пpивода26.71

Частота вpащения быстpоходного вала pедуктоpа794.00

Кpутящий момент на быстpоходном валу pедуктоpа46.16

Частота вpащения 1-ого пpомежуточного вала pедуктоpа224.00

Кpутящий момент на 1-ом пpомежуточном валу pедуктоpа158.95

Частота вpащения тихоходного вала pедуктоpа63.00

Кpутящий момент на тихоходном валу pедуктоpа547.36


1.4 Сравнительный анализ результатов и выбор рационального варианта


Параметры

Обозначение

Разм.

Метод

Валы

1

2

3

4

5

Крутящий момент

T

Н∙м

Ручной расчет

26,5

50,9

188,8

601,7

596,7

Кинемат

26,71

46,16

224

547,36

-

Частота вращения

n

1/мин

Ручной расчет

1430

715

180,6

57,3

57,3

Кинемат

1430

794

224

63

63


Вывод


Из таблицы сравнения результатов видно, что отклонения полученных результатов незначительны. Немного не сошлись величины, полученные для каждой отдельной ступени привода. Это может объясняться несколькими причинами. Например, несовершенством эмпирически полученных и выведенных формул. При автоматизированном расчете многие операции недоступны для пользователя, поэтому сделать проверку на каждом этапе работы невозможно. Так что действия, выполняемые программой мы увидеть не можем. При этом различным оказалось разбиение передаточного отношения по ступеням. С этой точки зрения, на мой взгляд, целесообразней взять вариант ручного расчета, так как здесь мы можем с большей лёгкостью варьировать рассчитываемые параметры.



2. Расчет и проектирование зубчатого редуктора


2.1 Выбор материалов зубчатых колес. Определение допускаемых напряжений


Назначаем сталь 40ХН (для колес) и 40ХН (для шестерней), причём для лучшей приработки зубьев твёрдость шестерни назначают больше твёрдости колеса не менее чем на 10-15 единиц. Термообработка для колёс улучшение, ориентировочный режим термообработки: закалка 820-8400 С, охлаждение в масле, отпуск 560-6000 С. Твёрдость 300 HB, предел текучести σт =600 МПа, предел прочности σв=850 МПа. Термообработка для шестерни закалка т.в.ч., ориентировочный режим термообработки: закалка 820-8400 С, охлаждение в масле, отпуск 180-2000 С. Твёрдость 47 HRC, предел текучести σт =1400 МПа, предел прочности σв=1900 МПа.

Допускаемые контактные напряжения:


(2.1)


где σно- предел контактной выносливости,

Sн- коэффициент безопасности,

КHL- коэффициент долговечности.

Для колеса и шестерни предел контактной выносливости


σно=2НВ+70 МПа; (2.1а)


коэффициент безопасности Sн=1,1 (из таблицы 8.9 [3]).

Предельные допускаемые напряжения


н]MAX=2,8σт МПа; (2.2а)

F]MAX=2,74НВ МПа. (2.2б)


Определим пределы контактной выносливости для колеса и шестерни 2-й ступени по формуле (2.1а).

Для колеса НВ 300, σно=2∙300+70=670(МПа), для шестерни НВ 470, σно=2.470+70=1010(МПа).

Допускаемые контактные напряжения для 2-й ступени определяем по материалу колеса, как более слабому.

Число циклов напряжений для колеса 2-й ступени при переменной нагрузке:


(2.3)


где - отношение соответствующего момента цикла к максимальному из моментов, берем из графика нагрузки,

ni – частота вращения выходного вала (ni=57,3 об\мин),

с – число зацеплений зуба за один оборот колеса(с равно числу колёс, находящихся в зацеплении с рассчитываемым).В нашем случае с=1,

ti – ресурс передачи.


ti=t.365.kг.24.kсут (2.3а)


t =7 – срок службы передачи (ч).

365.kг (kг=0,75) – количество дней работы передачи в году,

24.kсут (kсут=0,4) – количество часов работы передачи в сутки.

Подставим эти данные в формулу (2.3а), получим

ti=7∙365∙0,75∙24∙0,4=18396 (ч).

NНЕ=60∙18396∙57,3(130,35+0,753∙0,3+0,43∙0,35)= 31557106,8≈3,15∙107.

По графику (рис. 8.40. [3]) для колёс при НВ 300 NH0=2,5.107. Сравнивая NHE и NH0, отмечаем, что для колеса 2-й ступени NHE> NH0 . Так как все другие колёса вращаются быстрее, то аналогичным расчётом получим и для них

NHE < NH0 . При этом для всех колёс передачи коэффициент долговечности , где m-показатель, который зависит от вида колёс, так как у нас цилиндрические, то m=6. Отсюда КHL=0.96.

Допускаемые контактные напряжения определяем из формулы (2.1)

н]=584,7(МПа).

Допускаемые напряжения изгиба:


(2.4)


где σFO- предел выносливости зубьев по напряжениям изгиба,

SF- коэффициент безопасности,

КFC-коэффициент, учитывающий влияние двустороннего приложения нагрузки.

КFL-коэффициент долговечности.

Для колеса и шестерни предел выносливости зубьев по напряжениям изгиба: σFO=1,8∙НВ (2.4а)

Коэффициент безопасности SF=1,75([3]). Для колеса 2-й ступени по формуле (2.4а) σFO=1,8∙300=540 (МПа). Для шестерни 2-й ступени по (2.4а) σFO=1,8∙470=846 (МПа). Число циклов напряжений для колеса 2-й ступени при переменной нагрузке, по аналогии с формулой (2.3):


(2.5)


Отсюда NFE=3,15∙107. Рекомендуется принимать NFO=4∙106 для всех сталей.

NHE < NH0 . При этом коэффициент долговечности аналогично предыдущему расчету KFL =0,71.

Так как нагрузка на зубья действует только с одной стороны, то коэффициент КFC=1.

Допускаемые напряжения изгиба определяем из формулы (2.4)

для колеса [σFO]=353,6 (МПа),

для шестерни FO]= 554 (МПа).

Допускаемые напряжения при перегрузке:

Для колёс предельные контактные напряжения при перегрузке находим из формулы (2.2а), учитывая, что σт =850 МПа:

н]MAX=2,8∙850=2380(МПа)

Для колёс и шестерни предельные изгибные напряжения при перегрузке находим из формулы (2.2б), учитывая, что для колеса НВ 300, получим F]MAX=2,74∙300=822 (МПа), для шестерни при НВ 470 [σF]MAX=2,74∙470=1278,7 (МПа).


2.2 Проектировочный расчет зубчатых передач и валов


Рассчитаем 2-ю ступень как более нагруженную и в основном определяющая габариты редуктора.

Предварительный расчёт.

Условимся обозначать здесь и далее предварительно выбранные или рассчитанные параметры дополнительным индексом - штрих.


(2.6)


где а'2 – межосевое расстояние,

U2 – передаточное отношение 2-й ступени редуктора,

Eпр – приведённый модуль упругости,

Т4 – крутящий момент на выходном 4-ом валу редуктора(Н.мм),

K – коэффициент концентрации при расчётах по контактным напряжениям,

н] – допускаемые контактные напряжения,

ψba – коэффициент ширины колеса относительно межосевого расстояния.

Предварительно назначаем ψ'ba=0,4 (по таблице 8.4 [3]).

При этом по формуле ψ'bd=0,5.ψ'ba.(U+1) определим коэффициент ширины колеса относительно диаметра, ψ'bd=0,5∙0,4∙(3,15+1)=0,83bdmax=1,5 и по графику (рис 8.15 [3]) находим коэффициент концентрации при расчётах по контактным напряжениям: K≈1,04.

Модуль упругости стали Е12=2,1∙105 (МПа). Находим приведённый модуль упругости по формуле


Eпр=. (2.6а)


По формуле (2.6) определяем межосевое расстояние: а 2 = 161,99 мм.

Округляем по ряду Ra 40 (стр.136 [3]) до а2=160 мм, находим ширину зубчатого венца колеса b'w=ψ'baа3=0,4∙160=64 (мм). По таблице (8.5 [3]) принимаем ψ'm=25 (т.к. выходная ступень самая нагруженная). Находим модуль .

По таблице(8.1 [3]) назначаем m=2,5 (мм). Суммарное число зубьев: =128; принимаем z=128.

Число зубьев шестерни:=30,8 ( > Zmin = 17), принимаем z1=31.

Число зубьев колеса определяем по формуле: = 128 – 31=97.

Фактическое передаточное число: = 97/31=3,13.

Делительные диаметры шестерни и колеса:


d1=mn=31∙2,5=77,5 (мм);

d2=mn=97∙2,5=242,5 (мм).


Так как передача прямозубая и число зубьев шестерни и колеса больше 21, то коэффициент смещения для колеса и шестерни х1=0, х2=0.

Диаметр вершин зубьев для колеса и шестерни:


Случайные файлы

Файл
70713.rtf
29222.rtf
76616-1.rtf
112849.rtf
102189.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.