Центробежные компрессоры Березанской КС (125157)

Посмотреть архив целиком

Государственное образовательное учреждение высшего профессионального образования

Кубанский государственный технологический университет

(КубГТУ)

Кафедра холодильных и компрессорных машин и установок






Пояснительная записка

к курсовому проекту

по дисциплине "Компрессорные станции"

на тему "Центробежные компрессоры Березанской КС"




Выполнил

студент группы 04-М-ТФ1

Фесенко М.Ю.

Руководитель работы

к.т.н., доц. Шамаров М.В.

Нормоконтролер

к.т.н., доц. Шамаров М.В.




Краснодар

2008


Реферат


Курсовой проект содержит 38 листов, 2 рисунка, 2 таблицы, 4 листа графической части формата А1.

ГАЗ, КОМПРЕССОРНАЯ СТАНЦИЯ, ГАЗОПЕРЕКАЧИВАЮЩИЙ АГРЕГАТ, ГАЗОТУРБИННАЯ УСТАНОВКА, НАГНЕТАТЕЛЬ, МАГИСТРАЛЬНЫЙ ГАЗОПРОВОД.

Объектом проектирования является Березанская газокомпрессорная станция.

Цель работы – произвести реконструкцию газокомпрессорной станции с производительностью 325 млн. м3/год и ц/б нагнетателями с заданной мощностью.

В процессе реконструкции проводились газодинамический расчет нагнетателя, расчет критического числа оборотов вала, расчет цикла ГТУ.

Разработана схема комплексной автоматизации, предусматривающая контроль, защиту и регулирование параметров работы центробежного нагнетателя.

Проведено описание работы и эксплуатации компрессорной станции.



Содержание


Введение

1. Исходные данные для расчёта компрессорной станции

2. Газодинамический расчёт компрессора

2.1 Исходные данные

2.2 Расчёт ГПА

2.3 Треугольники скоростей для ступени в масштабе на входе и на выходе

3. Описание и принцип работы газоперекачивающего агрегата

3.1 Газоперекачивающий агрегат типа ГПА Ц-6,3 Б 56/1,45

3.2 Принцип работы

4. Автоматизация нагнетателей

4.1 Общие данные

4.2 Аварийные остановки со стравливанием и без стравливания

4.3 Расчет критических параметров

Заключение

Список использованной литературы



Введение


Газовая промышленность – сравнительно молодая отрасль народного хозяйства, определяющая высокие темпы его развития, что обусловлено быстрым ростом потребления энергетических ресурсов, в которых одно из ведущих мест занимает природный газ.

Применение газа в народном хозяйстве осуществляется по следующим основным направлениям:

- технологическое использование газа;

- энергетическое использование в виде топлива;

- коммунально-бытовые нужды;

- переработка газа с целью производства жидких углеводородов, серы, метанола.

С использованием этого высококачественного энергоносителя и ценного химического сырья ныне выпускается 94,5% стали и чугуна, 65% цемента, 95% минеральных удобрений.

Развитие газовой промышленности в решающей степени зависит от дальнейшего технического её переоснащения.

Для успешного выполнения заданий по добыче и транспортировке газа необходимо ускоренное оснащение компрессорных станций новыми перекачивающими агрегатами повышенной единичной мощности (16 и 25 тыс. кВт), а также полнонапорными нагнетателями мощностью от 7 тыс. кВт до 10 тыс. кВт.

Резко возросшие в последнее время объёмы транспорта газа повысили требования к снижению удельных затрат на его транспортировку и к увеличению надёжности газопотребления. Известно, что потребление газа неравномерно как по сезонам, так и в течении суток. Отклонения режимов работы от проектных ведут к значительным перерасходам топливного газа.

Перемещаясь по газопроводу - от головного сооружения к месту потребления - газ преодолевает сопротивление движению из-за местных и линейных потерь. При этом давление газа падает. Вместе с уменьшением давления уменьшается и плотность газа, то есть в целом его весовой заряд. Исходя из технико-экономических условий расчёта, на газопроводах строятся линейные компрессорные станции, отстоящие друг от друга в среднем на 100 – 150 км.

Компрессорные станции – это сложные и крупные инженерные сооружения, обеспечивающие основные технологические процессы по подготовке и транспорту газа:

- очистка;

- осушка;

- сжатие;

- охлаждение.

На компрессорной станции имеется оборудование, обеспечивающее водоснабжение, энергоснабжение, маслоснабжение, вентиляционные установки, установки пожаротушения.

Различают компрессорные станции головные и промежуточные (линейные).

Головные компрессорные станции сооружают вначале газопровода. Они предназначены для приёма газа с месторождения, его очистки, осушки, повышения давления до расчётного или рабочего.

На линейной компрессорной станции, которая сооружается между начальной и конечной точками газопровода, поддерживается давление на участках газопровода между двумя станциями.



1. Исходные данные для расчёта компрессорной станции


1. Производительность ГКС - 892 ∙103 м3/сутки;

2. Давление всасывания (избыточное) - 3862 кПа;

3. Давление нагнетания (избыточное) - 5600 кПа;

4. Температура газа на входе - 288 К;

5. Мощность единичного агрегата - 6,3 МВт;

6. Суммарная мощность ГКС - 25,2 МВт;

7. Число агрегатов - 4;

8. Тип ГПА - Ц6,3Б/56-1,45.



2. Газодинамический расчёт компрессора


2.1 Исходные данные


2.1.1 Переменные исходные данные

Мощность на валу компрессора Nв = 6300 кВт

Начальное давление Pн = 3862 кПа

Начальная температура Tн = 288 К

Конечное давление Pк = 5600 кПа

Универсальная газовая постоянная R =501 Дж/кг*К

Производительность по всасыванию Vн=206,4 м3/мин

Показатель адиабаты сжатия k = 1,308

Политропический КПД ηпол = 0,83

Теплоёмкость газа ср = 2107 Дж/кг*К

Рабочее число оборотов ГТУ n = 8200 об/мин

Конструктивное соотношение ξ = 0,45

Коэффициент сжимаемости z = 0,92


2.1.2 Постоянные исходные данные

Коэффициент внутреннего трения βтр = 0,02

Коэффициент внутренних перетечек βпер = 0,02

Механический КПД ηмех = 0,98

Допустимое напряжение кручения вала τкр = 5 х 107 Н/м2

Максимально допустимая окружная скорость [U2] = 300 м/с

Скорость газа на входе в компрессор Cн = 20 м/с

Расчётная величина π = 3,14

Скорость газа на выходе из компрессора Cк = 20 м/с

Конструкторский угол на выходе из колеса β = 45°

Коэффициент расхода φ = 0,24

Конструкторский угол на входе в колесо β = 32°

Толщина лопатки колеса δк = 0,005 м

Толщина лопатки диффузора δд = 0,01 м

Расчётное соотношение кс = 1,2

Конструктивное соотношение кд = 1,05

Угол установки лопатки диффузора на входе α4 = 40°

Густота решётки диффузора Ад = 2,2


2.2 Расчёт ГПА


2.2.1 Плотность газа в сечении Н-Н, кг/м3


(1)


где ρн – плотность газа в начальном сечении, кг/м3;

Pн – начальное давление, кПа;

R – газовая постоянная, Дж/кг*К;

Tн – температура газа, К;

z – коэффициент сжимаемости.


.


2.2.2 Массовый расход газа в компрессоре, кг/с


(2)


где G – массовый расход газа, кг/с;

Vн – производительность, м3/с.



2.2.3 Показатель сжатия:


(3)


где σ – показатель сжатия;

k – показатель адиабаты;

ηпол – политропический КПД.



2.2.4 Скорость газа в сечении 1-1, м/с:


C1 = 0,3 [U2], (4)


где C1 – скорость газа в сечении 1-1, м/с;

[U2] – максимальная окружная скорость, м/с


C1 = 0,3 · 300 = 90 м/с


2.2.5 Охлаждение газа во всасывающей камере, К:


(5)


где ΔTвс – охлаждение газа во всасывающей камере, К;

с1 – скорость газа, м/с

сн – скорость газа на входе в компрессор, м/с;

ср – теплоёмкость газа, Дж/кг*К.



2.2.6 Температура газа в сечении 1-1, К:


T1 = Tн – ΔTвс , (6)


где T1 – температура газа в сечении 1-1, К;

Тн – температура газа по начальным условиям, К;

ΔTвс – охлаждение газа во всасывающей камере, К.


Т1 = 288 – 1,827 =286,2 К.


2.2.7 Давление газа в сечении 1-1, кПа:


(7)


где P1 – давление газа в сечении 1-1, кПа;

Pн – давление газа по начальным условиям, кПа;

K – показатель адиабаты сжатия.




2.2.8 Температура в сечении к-к, К:


(8)


где Тк – температура газа в сечении к-к, К;

Pк – давление газа в сечении к-к, кПа;

σ – показатель сжатия.



2.2.9 Подогрев газа в компрессоре, К:


ΔТ = Тк – Т1, (9)


где ΔТ – подогрев газа в компрессоре.


ΔТ = 320,5 – 286,2 = 34,3 К.


2.2.10 Полная работа компрессора, Дж/кг:


(10)


где lпол – полная работа компрессора, Дж/кг;

σ – показатель сжатия;

R – газовая постоянная, Дж/кг*К.




2.2.11 Теоретический коэффициент закручивания:


, (11)


где φ2∞ - теоретический коэффициент закручивания;

φ2ч – коэффициент расхода;

β2л – конструкторский угол на выходе из колеса.



2.2.12 Число лопаток рабочего колеса:


(12)


2.2.13 Коэффициент циркуляции:


(13)


где μ – коэффициент циркуляции;

π – расчётная величина.




2.2.14 Газодинамический КПД:


(14)


Случайные файлы

Файл
183740.rtf
85547.rtf
задача 16.doc
DARVIN.DOC
28768.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.