Фильтр низкой частоты (124717)

Посмотреть архив целиком















Курсовая Работа на тему:

ФНЧ” – Фильтр низкой частоты



Содержание


Введение

1. Анализ технического задания

2. Расчёт электрических параметров элементов схемы

3. Выбор корпуса

Заключение

Список литературы



Введение


Основным назначением фильтров является подавление одних частотных составляющих сигнала и пропускание других. Частотная характеристика фильтра есть кривая зависимости затухания в нем от частоты.

Фильтры нижних частот имеют характеристику затухания, показанную на рис. 1. Для расчета ФНЧ СВЧ диапазона обычно используют метод сравнения с фильтрами-прототипами нижних частот из элементов с сосредоточенными параметрами. Это позволяет воспользоваться широко табулированными значениями элементов нормированных по частоте фильтров с чебышевскими или максимально плоскими характеристиками и совершенно не касаться сложных вопросов синтеза фильтров.


Рис. 1. Частотная характеристика ФНЧ.


Для лучшего совпадения значений распределенных и сосредоточенных элементов длины отрезков линии и должны быть меньше или равны . Здесь и длины отрезков, аппроксимирующих индуктивность и емкость соответственно; - длина волны в полосковом волноводе с диэлектриком, соответствующая частоте среза фильтра.

Токонесущая полоска СВЧ фильтра нижних частот изображена на рис. 2. Последовательные отрезки волноводов высокого характеристического сопротивления аппроксимируют индуктивность фильтра прототипа, каждая же емкость фильтра состоит из двух одинаковых разомкнутых отрезков несимметричных полосковых волноводов относительно низкого характеристического сопротивления.


Рис. 2. Эскиз токонесущей части микрополоскового ФНЧ.




1. Анализ технического задания


В данной курсовой работе нужно рассчитать фильтр низкой частоты. С заданными электрическими параметрами: частота среза fС = 3,5 ГГц; Z = 50 Ом; максимальное затухание в полосе пропускания АП ≤0,5 Дб; затухание на частоте fЗ = 4,9 ГГц; заданное затухание АЗ ≥ 30 Дб. Кроме этих данных, в расчёте потребуются электрические данные подложки, это диэлектрическая проницаемость ε, а также тангенс угла диэлектрических потерь подложки tgδ. Эти параметры влияют на активные потери (затухание в диэлектрике) в фильтре, с увеличением этих параметров, увеличиваются потери в диэлектрике, что приводит к снижению КПД СВЧ устройства.

Данный фильтр низкой частоты должен работать при температуре окружающей среды t0 = −30 0С…+50 0С. Годовая программа выпуска данного устройства 150 шт.

Основным достоинством полосковых и микрополосковых линий и устройств СВЧ диапазона на их основе является простота, компактность, дешевизна производства и малая масса. Рабочая полоса частот полосковых линий значительно больше, чем у стандартных прямоугольных волноводов.

Полосковые линии находят применение в СВЧ устройствах, работающих в диапазоне от 500 МГц до 15 ГГц. В последнее время широкое применение находят симметричные полосковые и микрополосковые линии, использующиеся как базовые элементы узлов СВЧ трактов и схем.

Способы изготовления печатных плат классифицируются следующим образом:

1) проводящее покрытие наносится только на те участки изоляционного основания, которые должны стать токопроводящими;

2)на основание предварительно наносится сплошной металлический слой, который в дальнейшем удаляется с участков, не входящих в схему. Рассмотрим эти способы.

Нанесение проводящих участков схемы:

Штамповка. При этом способе медную фольгу покрывают соответствующим клеящим веществом и помещают в штамповальный пресс, в котором фольга вырубается и впрессовывается в изоляционный материал. Нагретый штамп одновременно расплавляет склеивающее вещество, что обеспечивает сцепление, не уступающее механическому.

Металлизация токопроводящей краской. Производство схем этим способом включает применение в качестве подложек керамических материалов, стекла, кварца с последующим вжиганием краски. Металлизирующая краска состоит обычно из мелкодисперсионого порошка углекислого серебра или окиси серебра, связки и растворителя. Для защиты

полученного проводящего слоя применяют осаждение меди электролитическим способом.

Металлизация горячим распылением. Этот способ заключается в осаждении металлического тумана на изоляционную панель, на которую предварительно укладывают трафарет, изготовленный по контуру схемы.

Вакуумные способы получения проводящих покрытий. Способ вакуумного испарения металлов заключается в нагревание испаряемого металла выше точки плавления в герметически изолированном пространстве установки.

Изготовление схем способом химического и электролитического осаждения металла. Химическое осаждение плёнок из раствора на поверхность подложки основано на явлении вытеснения металла из раствора его соли восстановителем.

Подложки для печатных схем СВЧ диапазона:

Керамические материалы. Стеатитовая керамика, используемая в качестве изоляционных оснований, изготавливается на основе талька, углекислого кальция и бария, глины и органических пластификаторов.

Стекло и ситаллы. Стекло и изделия из стекла получают сплавлением стеклообразующих окислов с модификаторами. Модификацией стекла являются ситаллы. По механическим свойствам они превосходят высокоуглеродистые стали, легче алюминия, химически стойки, обладают малыми диэлектрическими потерями.

Листовые пластические материалы. Пластические материалы представляют собой комплексы низко- и высокомолекулярных групп, обладающих разными диэлектрическими свойствами. К этим материалам относятся: полиэтилен, фторопласты, полистирол, пенопласты, стеклопласты, сополимеры.


2. Расчёт электрических параметров элементов схемы


Исходные данные:

  • частота среза fС = 3,5 ГГц;

  • Z = 50 Ом;

  • максимальное затухание в полосе пропускания АП ≤0,5;

  • затухание на частоте fЗ = 4,9 ГГц;

  • заданное затухание АЗ ≥ 30 Дб.

Материал подложки:

Ситалл СТ – 38 – 1 (ТХО.781.009.ТУ)

Технологические характеристики:

ε = 7;

tg δ = 0,0004;

Электрический расчёт:

Находим отношение Ω - нормированную частоту:


(1)


По графику рис. 3.9 [1] для АП = 0,5 Дб и АЗ = 30 Дб при Ω=1,4 находим число элементов фильтра n=6

По табл.1 [1] находим для АП = 0,5 Дб и n=6:

g1 = 1,725;

g2 = 1,248;

g3 = 2,606;

g4 = 1,314;

g5 = 2,476;

g6 = 0,870.

Определим характеристические сопротивления разомкнутых отрезков, аппроксимирующих ёмкости фильтра-прототипа:


; (4.2) Ом ; (2)

Ом; (3)

Ом. (4)


Определим характеристические сопротивления короткозамкнутых отрезков L2, L4, L6, аппроксимирующих индуктивности фильтра-прототипа:


; (5)

Ом; (6)

Ом; (7)

Ом. (8)


По данным электрического расчёта определяем конструктивные размеры элементов фильтра. Результаты расчётов приведены в табл. 1



Табл. 1

Zi, Ом

ZС1

ZL2

ZC3

ZL4

ZC5

ZL6

2,2

0,6

4,0

0,63

4,1

1,3

0,51

0,55

0,49

0,56

0,50

0,53

bi, см

0,22

0,06

0,4

0,07

0,41

0,13

LC, см

0,437

0,471

0,420

0,479

0,428

0,474


Длины 50–омных отрезков выбираются произвольно. Пусть = 20 мм.

Определим активные потери в фильтре на частоте среза: tgδ=3·10−2. Потери в металле по графику рис. 3.8 [1]


;(9)

. (10)


Затухание в диэлектрике:


(11)


Результаты расчёта затухания в элементах фильтра приведены в табл. 2.


Табл. 2

i

βεi , Дб/см

βДi

βεi + βДi

0

0,00332

0,0452

0,0485

1

0,00163

0,0515

0,0531

2

0,00502

0,0432

0,0482

3

0,00155

0,0521

0,0537

4

0,00477

0,0517

0,0565

5

0,00234

0,0479

0,0502


Подставив величины длин отрезков резонаторов в формулу , которая для данного случая имеет вид:


(12)


Подставив значения, получим:


(13)


Рис. 4.1. Токонесущая полоска фильтра


Определим геометрические размеры подложки, для этого вычислим общую длину токонесущей полоски фильтра. Общая длинна полоски фильтра равна 74,7 мм. Выберем размер подложки, табл. П.3 [2]. Размеры подложки: габариты 75х48 мм; толщина – 1±0,05 мм.


Случайные файлы

Файл
Shpory po MChP.doc
7539-1.rtf
14451.rtf
144190.rtf
162552.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.