Тепловой и конструктивный расчет секционного водо-водяного подогревателя теплосети (124436)

Посмотреть архив целиком

Задание на курсовое проектирование по дисциплине: «Гидравлика и теплотехника»


Тема: Тепловой и конструктивный расчет секционного водо-водяного подогревателя теплосети.

Целевая установка: На основе анализа возможных схем теплообменников, учета их конструктивных особенностей выбрать оптимальную схему теплообменника. Произвести тепловой и конструктивный расчет. В выбранном прямоточном водо-водяном обогревателе горячего водоснабжения (рис. 1.3.) определить поверхность нагрева, длину, и количество секций. По рассчитанным параметрам выбрать стандартный теплообменный аппарат.

Исходные данные:

1. Производительность (прямоток)Q ………………..0.44· 106Дж/с

2. Температура греющей воды на входе в аппарат t′1….130° С

3. Температура греющей воды на выходе t″1 …………….120° С

4. Температура нагреваемой воды на входе t′2……..65° С

5. Температура нагреваемой воды на выходе t″2………..100° С

6. Диаметры трубок d вн /d н ……………….16/18 мм

7. Коэффициент теплопроводности стенки λст ………..105 Вт/(м · К)

8. Коэффициент теплопроводности накипи λ нак ……..3.49 Вт/(м · К)

9. Толщина накипи δ нак ………………0.2 мм

10. КПД η…………………….... 90%

Содержание работы (перечень вопросов)

Классификация теплообменных аппаратов

Анализ аппаратов

Выбор конструктивной схемы аппарата, материалов

Конструктивный и тепловой расчет элементов конструкции

К защите представить:

Пояснительную записку (объем 20 – 25 листов)

Рабочий чертеж, выполненный на отдельном листе по ГОСТ

Таблицы (графики)

Список используемой литературы

Руководитель курсового проекта доцент В.А. Емельянов


Содержание


1. Теоретическая часть

1.1 Классификация теплообменных аппаратов. Теплоносители

1.2 Конструкции трубчатых, пластинчатых и спиральных аппаратов поверхностного типа

2. Расчетная часть

2.1 Конструктивный расчет

2.2 Тепловой расчет

3. Приложения

4. Чертеж подогревательного аппарата

Выводы

Список используемой литературы


1. Теоретическая часть


1.1 Классификация теплообменных аппаратов. Теплоносители


Теплообменными аппаратами (теплообменниками) принято называть устройства, предназначенные для передачи тепла от одних тел к другим. В теплообменных аппаратах могут происходить различные тепловые процессы: изменение температуры, испарение, кипение, конденсация, расплавление, затвердевание и, наконец, более сложные, комбинированные процессы. Количество тел, участвующих в этих процессах, может быть больше двух, а именно: тепло может передаваться от одного тела к нескольким другим телам или, наоборот, от нескольких тел к одному. Эти тела, отдающие тепло, принято называть теплоносителями.

Классификация теплообменных аппаратов. Теплообменные аппараты имеют большое распространение во всех областях промышленности и широко применяются в теплосиловых установках. В зависимости от назначения теплообменные аппараты называются подогревателями, конденсаторами, испарителями, паропреобразователями и т. д.

По принципу действия теплообменные аппараты делятся на поверхностные и смесительные.

В поверхностных аппаратах теплоносители разделены твердыми теплопроводными стенками, через которые происходит теплообмен между теплоносителями. Та часть поверхности стенок, через которую передается тепло, называется поверхностью нагрева.

В свою очередь поверхностные теплообменные аппараты делятся на рекуперативные и регенеративные.

Если теплообмен между теплоносителями происходит через разделительные стенки, то теплообменник называют рекуперативным. В аппаратах этого типа в каждой точке разделительной стенки тепловой поток сохраняет постоянное направление.

Если же два или больше теплоносителей попеременно соприкасаются с одной и той же поверхностью нагрева, то теплообменный аппарат называют регенеративным. В период соприкосновения с одним из теплоносителей стенки аппарата получают тепло и аккумулируют его; в следующий период соприкосновения другого теплоносителя с той же поверхностью стенок аккумулированное тепло передается теплоносителю. Направление теплового потока во втором периоде изменяется на противоположное.

В большинстве рекуперативных аппаратов осуществляется непрерывная передача тепла через стенку от одного теплоносителя к другому. Эти аппараты, как правило, являются аппаратами непрерывного действия. Рекуперативные аппараты, в которых производится периодический нагрев или охлаждение одного из теплоносителей, относят к аппаратам периодического действия.

Регенеративные теплообменники в большинстве случаев являются аппаратами периодического действия; в них разные теплоносители поступают в различные периоды времени. Непрерывная работа осуществляется в таких аппаратах лишь в том случае, если они снабжены движущимися стенками или насадками, попеременно соприкасающимися с потоками разных теплоносителей и непрерывно переносящими тепло из одного потока в другой.

В смесительных теплообменных аппаратах тепло- и массообмен осуществляется путем непосредственного контакта и смешения жидких и газообразных теплоносителей.

В зависимости от назначения производственных процессов в качестве теплоносителей могут применяться самые различные газообразные, жидкие и твердые тела.

Водяной пар, как греющий теплоноситель, в теплообменных аппаратах получил большое распространение благодаря ряду его достоинств. Его можно транспортировать по трубопроводам на значительные расстояния (до нескольких сотен метров). Интенсивная теплоотдача от конденсирующегося водяного пара способствует уменьшению поверхности теплообмена. Конденсация водяного пара сопровождается большим уменьшением его энтальпии; благодаря этому для передачи сравнительно больших количеств тепла требуются небольшие весовые количества пара. Постоянство температуры конденсации при заданном давлении облегчает поддержание постоянства режима и регулирования процесса в аппаратах.

Основным недостатком водяного пара является неизбежное и значительное повышение давления с ростом температуры. Например, при давлении 0,981* 105 Па (1 кгс/см2) температура насыщенного пара составляет 99,1 С, а температура насыщенного пара 309,5 С может быть получена только при давлении 98,1 * 105 Па. Поэтому паровой обогрев применяется для процессов нагревания только до умеренных температур (порядка 60 – 150 С). Обычно давление греющего пара в теплообменниках составляет от 1,96* 105 до 11,8 * 105 Па. Для высоких температур эти теплообменники очень громоздки (имеют толстые стенки и фланцы), весьма дороги и поэтому применяются редко.

Горячая вода, как греющий теплоноситель, получила большое распространение, особенно в отопительных и вентиляционных установках. Она приготовляется в специальных водогрейных котлах, производственных технологических агрегатах (например, в печах) или водонагревательных установках ТЭЦ. Горячую воду, как теплоноситель, можно транспортировать по трубопроводам на значительные расстояния (на несколько километров). Понижение температуры воды в хорошо изолированных трубопроводах составляет не более 1 С на 1 км.

Достоинством воды, как теплоносителя является сравнительно высокий коэффициент теплообмена. Однако горячая вода из тепловых сетей в производственных теплообменниках используется редко, так как в течение отопительного сезона температура ее не постоянна и изменяется от 70 до 130 С, а в летнее время тепловые сети не работают.

Дымовые и топочные газы применяются в качестве греющего теплоносителя, как правило, на месте их получения для непосредственного обогревания различных промышленных изделий и материалов, если качество последних несущественно изменяется при загрязнении сажей и золой. Если же загрязнение обрабатываемого материала недопустимо, то подогрев его дымовыми газами ведется посредством воздуха, который играет роль промежуточного теплоносителя, т. е. дымовые газы через теплопроводную стенку в рекуперативных теплообменниках отдают тепло воздуху, воздух – обрабатываемому материалу. Дымовые газы могут применяться в теплообменниках для нагрева, выпарки и термической обработки газообразных, жидких и твердых веществ.


Таблица 1.1. Характеристика некоторых высокотемпературных теплоносителей.

Название теплоносителя

Химическая формула

Температура, С

отвердевания

кипения

Минеральные масла


0 – 15

215

Нафталин

С10Н8

80,2

218

Дифенил

С12Н10

69,5

255

Дифениловый эфир

(С6 Н5) О2

27

259

Дифенильная смесь

26,5% дифенила и 73,5% дифенилового эфира

12,3

258

Глицерин

С3 Н5 (ОН)3

- 17,9

290

Кремнеорганические соединения (тетракрезилоксисилан)


(СН3 С6 Н4 О)4


-(30 – 40)


440

Нитритнитратная смесь

7% NaNO3 + 40% NaNO2 + 53% KNO3

143

Выше 550

Натрий

Na

97,8

883


Случайные файлы

Файл
157862.rtf
98969.rtf
30163.rtf
182712.rtf
143225.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.