Расчет и проектирование привода (редуктор) с клиноремённой передачей (124161)

Посмотреть архив целиком

Содержание


1. Задание по курсовому проектированию...........................................3

2. Введение..............................................................................................4

3. Расчет ременной передачи.................................................................6

4. Расчет редуктора.................................................................................8

5. Расчет валов

а) Быстроходный вал.........................................................................12

б) Тихоходный вал.............................................................................18

6. Выбор подшипников..........................................................................23

7. Выбор шпонок....................................................................................26


1.Задание по курсовому проектированию.


Разработать редуктор для передачи крутящего момента от электродвигателя к рабочей машине через муфту и клиноременную передачу.

Тип электродвигателя RA160L4;

Мощность двигателя Рдв = 15кВт;

Число оборотов в минуту nдв = 1460 об/мин;

Тип ременной передачи – клиноременная,

Редуктор – цилиндрический косозубый;

Передаточное число ременной передачи Uрем = 2,8;

Передаточное число редуктора Uред = 5,6;

КПД редуктора ηред = 0,97;

КПД муфты ηмуф = 0,97;

КПД ременной передачи ηрем.пер. = 0,94;

Время работы привода L = 15000 часов.

Режим работы – двухсменный.

Схема привода.

Электродвигатель асинхронный — клиноременная передача — редуктор.

Рабочая машина;

Клиноременная передача;

Редуктор;

Муфта;

Электродвигатель.







2. Введение.


Редуктором называют зубчатый, червячный или зубчато-червячный передаточный механизм, выполненный в закрытом корпусе и предназначенный для понижения угловой скорости, а, следовательно, повышения вращающего момента. Механизмы для повышения угловой скорости, выполненные в виде отдельных агрегатов, называются мультипликаторами. В редукторах обычно применяют зубчатые колеса с эвольвентным зацеплением, иногда используют зацепление М.Л.Новикова.

Редуктор проектируется для привода данной машины или по заданной нагрузке и передаточному числу без указания конкретного назначения.

Редуктора классифицируют:

  • По виду передач на цилиндрические с параллельными осями валов; конические с перекрещивающимися осями валов; червячные с перекрещивающимися осями валов; комбинированные конически-цилиндрические; зубчато-червячные и другие.

  • По числу пар одноступенчатые цилиндрические с прямозубыми колесами с

u  7 , с косозубыми или шевронными колесами при u10 и Р50 кВт; одноступенчатые конические с прямыми, косыми и криволинейными зубьями при u  5 и Р  100кВт; одноступенчатые червячные при u = 8...80 и Р  50кВт; многоступенчатые.

Зубчатая передача, оси валов которой пересекаются, называется конической. Конические зубчатые колеса изготавливают с прямыми, косыми и криволинейными зубьями и применяют там, где возникает необходимость передачи момента с одного вала к другому с пересекающимися осями. Конические зубчатые редуктора проектируют сравнительно небольших мощностей, так как консольное расположение шестерни на валу при значительных силах в зацеплении приводит к большим деформациям, нарушающим точность зацепления и нормальную работу передачи. Иногда применяют конические передачи, в которых шестерня расположена между опорами, а не консольно. Такая конструкция сложнее и дороже.


3.Рассчет ременной передачи.

Рассчитываем момент на ведущем валу

Твед = Тэд = Рэд∙103 ∙30nдв

Твед = 15∙103∙30/π∙1460 =100 Н∙м

Выберем диаметр ведущего шкива.

Пусть D1 = 140 мм.

Рассчитаем скорость ремня:

υ = π D1 nдв /60∙103

υ = π∙140∙1460/(60∙103) = 11 м/с

По мощности двигателя

Рдв = 15кВт и nдв = 1460 об/мин

Выбираем стандартный тип ремня:

тип Б;

Рассчитываем диаметр ведомого шкива:

D2 = D1Uрем (1-ξ)

D2 = 140∙2,8 (1-0,01) = 388 мм

Выбираем ближайшее значение из нормального ряда чисел:

D2 = 400 мм

Рассчитываем фактическое передаточное число ременной передачи:

Uфакт = D2 / D1(1-ξ)

Uфакт = 400/140(1-0,01) = 2,89

Рассчитываем межосевое расстояние:

Примем его равным D1+D2 = 140+400 = 540 мм.

Длина ремня:

Lр = 2 а + π (D1+D2 )/2 + (D2- D1)2/4 а

Lр = 2∙540 + π/2∙(140+400) + 2602/4∙(140+400) = 1959,53 мм

Выбираем ближайшее из нормального ряда чисел:

Lр = 2000 мм

Тогда уточняем межосевое расстояние по стандартной длине:

а = (2L - π (D1+D2 ) + [(2L - π (D1+D2 ))2 – 8(D2- D1)2]1/2)/8

а = (2∙ 2000 – 3,14(140+400) + [(2∙2000 – 3,14 (140+400))2 – 8(140+400)2]1/2)/8 = 540,24 мм=

= 540 мм

Определяем угол обхвата ремня:

α = 180 – (D1-D2) ∙ 57°/a

α = 180 – 260∙ 57°/540 = 152,56° ≈ 150°. Значит, коэффициент угла обхвата, соответствующий углу обхвата равному 150° Сα = 0,92

Коэффициент, учитывающий длину ремня:

Lр/ L0 = 2000/2240 = 0,89  CL = 0,98

Коэффициент режима работы при двусменном режиме работы:

Среж = 1,38

Мощность, передаваемая при стандартных условиях ремнем Б, длиной

L0 = 2240 мм P0 = 2,90 кВт.

Допустимая нагрузка на ремень:

Рдопуст = Р0 Сα СL/ Среж

Рдопуст = 2,90∙ 0,92∙0,98/1,38 = 1,9 кВт

Определение числа ремней:

Z = Рдвдопуск Сz,

где Сz = 0,9

Z = 15/1,9 ∙0,9 = 8,7.

Берем Z = 9

Усилие, действующее со стороны ременной передачи

FP = 1,7 ∙ Рдв∙103∙Срежsin(αрем/2)/ υремня ∙ Сα∙Сz = 3635 Н,

где

Рдв = 15 кВт

Среж = 1,38

αрем = 152,56˚

υремня = 11 м/с

Сα = 0,95

Сz = 0,9

Проверочный расчет:


4. Расчет редуктора.

Сталь 40Х. Термообработка. Улучшенная.

Шестерня

НВ1 = 270 НВ

σв = 900н/мм2,


σг =750 н/мм2


Колесо

НВ2 = 240 НВ

σв = 780н/мм2,

σг =540 н/мм2

Выбираем сталь:

Определяем число оборотов валов:

Ведущий вал:

n1 = nдв/Uрем

n1 = 1460/2,8 = 505 об/мин

Ведомый вал:

n2 = n1/Uред

n2 = 505/5,6 = 90 об/мин

Определяем базовое число циклов:

NНО1 = 30∙ НВ12,4

NНО2 = 30∙ НВ22,4

NНО1 = 30∙ 2702,4 = 20∙106 циклов

NНО2 = 30∙2402,4 = 15∙106 циклов


Предельное напряжение при базовом числе циклов:

σнlimb1 = 2∙НВ1 + 70

σнlimb2 = 2∙НВ2 + 70

σнlimb1 = 2∙270 + 70 = 610 н/мм2

σнlimb2 = 2∙240 + 70 = 550 н/мм2

Число циклов нагружения:

NНЕ1 = 60∙ n1L1

NНЕ2 = НЕ1/ Uред

NНЕ1 = 60∙ n1L1 = 60∙505∙15000 = 60,6∙106 циклов

NНЕ2 = NНЕ1/ Uред = 60,6/5,6 = 10,8∙106 циклов

Коэффициент долговечности:

КHL = 1, т.к. NНЕ > NНО

Предельное напряжение:

σнlim1 = σнlimb1∙ КHL

σнlim2 = σнlimb2∙ КHL

σнlim1 = 610∙1 = 610 н/мм2

σнlim2 = 550∙1 = 550 н/мм2

Допускаемое напряжение:

σНР1 = 0,9 ∙ σнlim1/ Sн

σНР2 = 0,9 ∙ σнlim2/ Sн

σНР = 0,45 (σНР1 + σНР2)

σНРmin = σНР2

σНР1 = 0,9∙610/1,1 = 499,1 ≈ 500 Н∙м

σНР2 = 0,9∙550/1,1 = 450 Н∙м

σНР = 0,45 (500 + 450) = 225,45 Н∙м

σНРmin = σНР2 = 450 Н∙м

Рассчитываем межцентровое расстояние зубчатой передачи:

аw = Ка (Uред + 1) [Т1 КнβваUред σНР2]1/3

Ка = 430 – коэффициент межцентрового расстояния

Т1 = 270 Н∙м

ψва = ψвd ∙2/(Uред + 1) – коэффициент отношения ширины зуба к межцентровому расстоянию.

ψвd = 1 Кнβ = 1,05 – коэффициент отношения ширины зуба к диаметру.

Тогда, следовательно,

ψва = 0,303

аw = 430 (5,6 + 1) [270∙ 1,05/(0,303∙5,6∙4502)]1/3 = 266,18 мм

Выбираем из нормального ряда чисел по ГОСТ 2144 – 76:

аw = 315 мм

аw = (Z1+Z2)mn/2 cosβ

Примем β = 10°

Определяем модуль зацепления

mn= 2 аw cosβ/Z1 (1+Uред)

Определяем числа и угол наклона зубьев, предварительно задав угол наклона

Примем β = 10°

Возьмем Z1 = 20 зубьев.

Тогда

mn= 2∙315 cos10/(20∙ (1+5,6)) = 4,7 мм

Выбираем из нормального ряда чисел для модуля зацепления, беря меньший по значению:

mn= 4,5 мм

Найдем суммарное число зубьев

(Z1+Z2) = 2 аw cosβ/ mn

(Z1+Z2) = 2 315 cos10/ 4,5 = 138 зубьев

Тогда:

Z1 = (Z1+Z2)/ (1+Uред)

Z2 = (Z1+Z2) - Z1

Z1 = 138/ (1+5,6) = 21

Z2 = 138 – 21 = 117 зубьев.

Найдем фактическое передаточное число редуктора:

Uред. факт = Z2/ Z1 = 117/21 = 5,57

Uред. факт = 117/21 = 5,57

Найдем косинус угла наклона зубьев:

Cosβ = (Z1+Z2)mn / 2 аw

Cosβ = 138∙4,5 / 2∙315= 0,9857

Считаем:

d1 = mn Z1/ cosβ

d2 = mn Z2/ cosβ

d1 = 4,5∙21/ 0,9857 = 95,87 мм

d2 = 4,5∙117/ 0,9857 = 534,13 мм

Проверка:

d1 + d2 = 95,87+534,13 = 630 мм = 2 аw . Верно.

Тогда ширина колес:

b2 = ψва аw

b1 = b2 + (2..4) mn

b2 = 0,303∙315 = 95,445 ≈ 95 мм

b1 = 95 + 2 ∙ 4,5 = 104 мм

Проверка:

b2sinβ≥4mn

95 ∙ sinβ≥4∙4,5

16,800≥18

Неверно. Следовательно, нужно изменить mn или угол β.

Возьмем mn=4,0 мм

Найдем суммарное число зубьев:

(Z1+Z2) = 2 аw cosβ/ mn

(Z1+Z2) = 2 315 cos10/ 4,0 = 155 зубьев

Тогда:

Z1 = (Z1+Z2)/ (1+Uред)

Z2 = (Z1+Z2) - Z1

Z1 = 155/ (1+5,6) = 23 зуба

Z2 = 155-23 = 132 зуба


Найдем фактическое передаточное число редуктора:

Uред. факт = Z2/ Z1

Uред. факт =132/23 = 5,74

Найдем косинус угла наклона зубьев:

Cosβ = (Z1+Z2)mn / 2 аw

Cosβ = 155∙4,0/ 2∙315= 0,9841;

Тогда:

β = 10,23˚

Считаем:

d1 = mn Z1/ cosβ

d2 = mn Z2/ cosβ

d1 = 4,0∙23/ 0,9841= 93,48 мм

d2 = 4,0∙132/0,9841= 536,52 мм

Проверка: d1 + d2 = 93,48+536,52 = 630 мм = 2 аw . Верно.

Тогда ширина колес:

b2 = ψва аw

b1 = b2 + (2..4) mn

b2 = 0,303∙315 = 95,445 ≈ 95 мм

b1 = 95 + 2∙4,0 = 103 мм ≈ 100 мм

Проверка:

b2sinβ≥4mn

95∙sinβ≥4∙4

16,873≥16 Верно.

Определяем диаметры вершин зубьев da и впадин df зубчатых колес:

da = d + 2∙ mn

df = d – 2,5∙ mn

da1 =93 + 2∙ 4 = 101 мм

da2 = 537 + 2∙ 4 = 545 мм

df1 = 93 – 2,5∙ 4 = 83 мм

df2 = 537 – 2,5∙ 4 = 527 мм





5. Расчет валов:

5.1 Быстроходный вал.

Так как df1 = 83 мм принимаем вал-шестерню.

Момент на ведущем валу:

Т1 = ТдвUфакт ηрем.пер

Т1 = 100∙2,89∙0,94 = 271,66 Н м ≈ 270 Н∙м

Проведем подборку диаметров составляющих вала:

d = (T1∙103/0,2[τ])1/3

d = (270∙103/0,2∙10)1/3 = 51,3 мм.

Выбираем из стандартного ряда чисел:

d = 50 мм

d1 = d1+ (4..5) мм = 55 мм

dп d2+ (4..5) мм = 60 мм

d2 = dп+ 5 мм = 65 мм

d4 = d3+ (6..10) мм = 75 мм

Проведем подборку длин составляющих вала:

L0 = (1,6..2) d = 100 мм

L1 = 20..25 мм = 25 мм

Lп ≈ 0,5 dп = 30 мм

L2 = 10..12 мм = 12 мм

L3 = b2 = 95 мм

L4 = L2 = 12 мм

L5 = L1 = 25 мм

Тогда:

L = 149 мм

а = 90 мм

Расчет зубчатой пары: (Расчет вала на прочность)

Окружная сила

Ft = 2T1∙103/d1

Ft = 2∙270∙103/55 = 9818 Н

Осевое усилие

Fa = Fttg β

Fa = 9818 ∙ tg 10,23 = 1771 Н

Радиальная нагрузка

Fr = Fttg α / cosβ

Fr = 1771∙tg20/cos10,23 = 655 Н

Рассчитываем число оборотов первого (быстроходного) вала редуктора:

nвед (быстроходный вал редуктора) = nдв/ Uфакт

nвед (быстроходный вал редуктора) = 1460/2,89 = 505 об/мин


Построение эпюр:


l



RbA = 0,5∙ Fr + Fa∙d1/2L

RbB = 0,5∙ Fr - Fa∙d1/2L

RbA = 0,5∙655 + 1771∙50/2∙149 = 333,44 Н

RbB = 0,5∙655 – 1771∙50/2∙149 = 321,56 Н

Проверка: RbA + RbB - Fr = 0

333,44+321,56 – 655 = 0 Верно.


М1 = RbAL/2

М = RbBL/2

М1 = 333,44∙149/2∙1000 = 24,84 Н∙м

М = 321,56∙149/2∙1000 = 23,96 Н∙м

М1 = 333,44∙149/2∙1000 = 24,84 Н∙м

М = 321,56∙149/2∙1000 = 23,96 Н∙м




RГА = RГВ = 0,5∙Ft

М2 = Ft∙ L/4

RГА = RГВ = 0,5∙ 9818 = 4909 H

М2 = 9818∙149/4∙1000 = 365,72 Нм

Проверка: RГА + RГВ - Ft = 0

4909 + 4909 – 9818 = 0 Верно.



а



RAP = FP∙ (L + a)/L

RBP = FP∙ a/L

MP = FP∙ a

RAP = 3635∙ (149 + 90)/149 = 5831 H

RBP = 3635∙ 90/149 = 2196 H

MP = 3635∙90/1000 = 327,15 Н∙м

Рассчитаем общий момент:

MОБЩ = [(M1)2 + (M2)2]1/2

MОБЩ = [(24,84)2 + (365,72)2]1/2 = 366,56 Н∙м


Проверочный расчет ведущего вала.

Сталь 40х улучшенная.

Шестерня НВ1 = 270 НВ σв = 900н/мм2, σг =750 н/мм2

Колесо НВ2 = 240 НВ σв = 780н/мм2, σг =540 н/мм2


Коэффициент запаса для нормальных напряжений:

nσ = σ-1/(Kσp σa + ψσ σm),

где σ-1­ – предел выносливости гладкого образца при симметричном цикле напряжений изгиба. σ-1­ = 410 МПа

σa – амплитуда номинальных напряжений изгиба, σa ≈ МОБЩ/0,1dп3 = 64,1 МПа

σm – среднее значение номинального напряжения, σm = 0.

Kσp – эффективный коэффициент концентрации напряжений для детали.

БЕРЕМ ИЗ ТАБЛИЦЫ 3,5

Тогда:

nσ = 410/(3,5∙ 64,1) = 1,83

Коэффициент запаса для касательных напряжений:

nτ = τ-1/(Kτp τa + ψτ τm),

где τ -1­ – предел выносливости гладкого образца при симметричном цикле напряжений кручения. τ -1­ = 240 МПа

τa – амплитуда номинальных напряжений кручения,

τm – среднее значение номинальных напряжений, τa = τm = 1/2∙τ = 10,1

Kτp – эффективный коэффициент концентрации напряжений для детали.

БЕРЕМ ИЗ ТАБЛИЦЫ 2,5

ψτ = 0,1

Тогда:

nτ = 240/(2,5∙10,1 + 0,1∙ 10,1) = 9,21

Общий коэффициент запаса прочности на совместное действие изгиба и кручения:

n = nσ nτ /[ (nσ)2 + (nτ)2]1/2

n = 1,83∙9,21 /[1,832 + 9,212]1/2 = 1,81

Проверка соблюдения условия прочности:

nmin ≥ [n], где [n] = 1,5..3,5

1,81≥ 1,5


5.2 Тихоходный вал.

Проведем подборку диаметров составляющих вала:

Момент на тихоходном валу:

T2 = T1Uред∙ηред = 270∙5,6∙0,97 = 1466,64 Н∙м ≈ 1500 Н∙м

d = (T2∙103/0,2[τ])1/3 = (1500∙103/0,2∙20)1/3 = 72,1 мм.

Выбираем из стандартного ряда чисел:

d = 71 мм

d1 = d1+ (4..5) мм = 75 мм

dп d2+ (4..5) мм = 80 мм

d2 = dп+ 5 мм = 85 мм

d3 = d2+ 2 мм = 87 мм

d4 = d3+ (6..10) мм = 95 мм

Проведем подборку длин составляющих вала:

L0 = (1,6..2) d = 142 мм

L1 = 20..25 мм = 25 мм

Lп ≈ 0,5 dп = 40 мм

L2 = 10..12 мм = 12 мм

L3 = b1 = 100 мм

L4 = L2 = 12 мм

Тогда:

L = 164 мм

а = 115 мм

Окружная сила

Ft = 2T2∙103/d1 = 2∙1500∙103/71 = 40000 Н

Осевое усилие

Fa = Fttg β = 40000 ∙ tg 10,23 = 7219 Н

Радиальная нагрузка

Fr = Fttg α / cosβ = 40000∙tg20/cos10,23 = 14794 Н


Случайные файлы

Файл
151587.rtf
30893.rtf
7149-1.rtf
139311.doc
151128.rtf