Привод цепного конвейера (123741)

Посмотреть архив целиком












Привод цепного конвейера


1. Выбор электродвигателя и кинематический расчёт привода


По [3] принимаем КПД элементов привода:

КПД червячной передачи ;

КПД закрытой цилиндрической зубчатой передачи с опорами ;

КПД муфты ;

КПД пары подшипников приводного вала.

Тогда общий КПД привода:



Требуемая мощность электродвигателя:


кВт,


где Р - мощность на приводном валу; кВт (см. техническое задание).

В качестве двигателя принимаем электродвигатель серии 4А с синхронной частотой вращения

, кВт

Тип двигателя 4А100L2У3

Общее передаточное число двигателя



Передаточное число редуктора

Распределяем передаточное число по ступеням


,


Определяем мощность , частоту вращения и вращающий момент на валах привода

Вал I Вал III


кВт, кВт,


, ,


. .


Вал II Вал IV


кВт, кВт,


, ,


. .



2. Расчёт привода


2.1 Расчёт тихоходной ступени


Исходные данные:

а) передаточное число ступени ;

б) частота вращения шестерни ;

в) частота вращения колеса ;

г) вращающий момент на колесе ступени


.


1. Выбор варианта термообработки зубчатых колёс.

Принимаем I-й вариант термообработки

Термообработка шестерни – улучшение, твёрдость поверхности 269…302 НВ

Термообработка колеса – улучшение, твёрдость поверхности 235…262 НВ

Средние твёрдости:

Для шестерни


НВ


Для колеса


НВ


Марки сталей одинаковы для шестерни и колеса: 45; 40X; 40XH; 35XM и др.

2. Преднамеренное определение допускаемого контактного напряжения при расчёте на сопротивление усталости рабочих поверхностей зубьев.

Придел контактной выносливости



Коэффициент запаса



Базовое число циклов напряжений



По табл.1П.8 приложения 1П коэффициент, характеризующий интенсивность типовых режимов нагружений передачи при расчете на сопротивление контактной усталости, для заданного типового режима 2

Эквивалентное число циклов напряжений за расчетный срок службы передачи часов определим по формуле:



Так как , то



Так как , то



Допускаемое контактное напряжение



В качестве расчетного допускаемого напряжения при расчете косозубой и

шевронной передач на сопротивление контактной усталости принимается условное допускаемое контактное напряжение , определяемое по формуле


так как , то


3. Определим межосевого расстояния.

Принимаем коэффициент

Коэффициент

По кривой II коэффициент

Коэффициент

Межосевое расстояние ступеней



Принимаем стандартное значение

4. Определение модуля передачи

Нормальный модуль выбираем исходя из следующего условия



Ширина венца колеса



5. Определение угла наклона зубьев, а также чисел зубьев шестерни и колеса.

Определим коэффициент перекрытия зубьев при



Число зубьев шестерни



Число зубьев колеса

6. Определение фактического передаточного числа рассчитываемой ступени.



Уточняем угол




7. Определение основных размеров шестерни и колеса.





Ширина венца шестерни

Рабочая ширина передачи

Уточняем коэффициент



8. Проверка пригодности заготовок зубчатых колёс и выбор материала для их изготовления.

Диаметр заготовки

Принимаем сталь 40X, так как 92<125

Толщина заготовки диска колеса

Толщина заготовки обода колеса

Принимаем сталь 40X, так как 24<80 и 25<80

9. Определение степени точности передачи.

Окружная скорость



По табл. 1П.15 приложения 1П, исходя из , для непрямозубых цилиндрических передач выбираем 9-ю степень точности, которая допускает окружную скорость зубчатых колёс до 4 .

10. Уточнение допускаемого контактного напряжения при проверочном расчёте на сопротивление контактной усталости.

Принимаем параметр шероховатости

Коэффициент, учитывающий влияние исходной шероховатости сопряженных поверхностей зубьев

Коэффициент, учитывающий влияние окружной скорости , так как




Таким образом, величины и остались такими, как и при предварительном расчёте ввиду того, что произведение оказалось равным 0,9. Тогда прежней остаётся и расчётная величина .

11. Определение сил, действующих в косозубом зацеплении.

Окружная сила на делительном цилиндре в торцовом сечении косозубой передачи:



При этом для шестерни и колеса:

Радиальная сила для шестерни и колеса:



Осевая сила для шестерни и колеса:



12. Определение коэффициента нагрузки .

Коэффициент Коэффициент




13. Проверочныё расчёт передачи на сопротивление контактной усталости.


(2.1)


Коэффициент


(2.2)


где - делительный угол профиля в торцовом сечении



- основной угол наклона зубьев



Коэффициент

Так как , то



(2.3)


(2.4)


(2.5)








14. Определение допускаемого напряжения изгиба при расчёте зубьев на сопротивление усталости при изгибе.

Определяем и



Базовое число циклов напряжений для всех марок сталей -



Так как , то

Так как , то при



Принимаем коэффициент реверсивности

Допускаемое напряжение изгиба на переходной поверхности зуба



15. Определим коэффициент нагрузки

из графика

, где - динамическая добавка


(2.6)


где - для косозубых передач



Тогда коэффициент нагрузки при расчёте на изгиб

16. Проверочный расчёт зубьев на сопротивление усталости при изгибе.

Эквивалентное число циклов нагружений




Коэффициент, учитывающий форму зуба и концентрацию напряжений -



Коэффициент, учитывающий наклон зубьев



Так как , то принимаем

Коэффициент, учитывающий перекрытие зубьев

Так как , то



Сопротивление усталости зубьев шестерни и колеса при изгибе обеспечивается. Для большинства передач, как и в нашем примере.

17. Проверочный расчёт передачи на контактную прочность при действии максимальной нагрузки (при кратковременной перегрузке).

Максимальное допустимое контактное напряжение при кратковременной перегрузке

Фактическое максимальное контактное напряжение при кратковременной перегрузке



Изгибная прочность при кратковременной перегрузке обеспечивается, так как

17. Проверочный расчёт передачи при изгибе пиковой нагрузкой (при кратковременной перегрузке).

Максимальное допустимое напряжение изгиба при кратковременной перегрузке



Максимальное напряжение изгиба при кратковременной перегрузке



Изгибная прочность при кратковременной перегрузке обеспечивается, так как



2.2 Расчёт быстроходной ступени


Исходные данные для расчета:

а) ступень быстроходная червячно-цилиндрического двухступенчатого нестандартного редуктора индивидуального привода;

б) передаточное число ;

в) частота враще66ния червяка ;

г) частота вращения червячного колеса ;

д) вращающий момент на валу червяка;

е) вращающий момент на валу червячного колеса ;

ж) кратковременная перегрузка ;

з) расчётный срок службы ;

и) типовой режим нагружения - 2 (средний равновероятный);

к) привод реверсивный;

л) расположение червяка - верхнее горизонтальное (над червячным колесом).

Порядок расчета

1. Выбор материала червяка и венца червячного колеса. Наибольшей нагрузочной способностью обладают червячные передачи, у которых червяки выполнены из легированной стали и витки подвергнуты термообработке до твердости (закалка ТВЧ, цементация и пр.) с последующим их шлифованием и полированием.

В нашем примере принимаем материал червяка - сталь 40Х, закалка ТВЧ до твердости с последующим шлифованием и полированием витков. Тип червяка - эвольвентный (Z1).

Выбор материала венца червячного колеса связан со скоростью скольжения , которую рекомендуется предварительно определять по формуле



По табл. 1П.32 приложения 1П при в качестве венца червячного колеса принимаем оловянную бронзу БрО10Ф1: способ отливки П - в песок; ;;

2. Определение допускаемых контактных напряжений при расчете передачи на сопротивление усталости активных поверхностей зубьев червячного колеса.

По формуле (2.28) (см.п.2.1) для материала венца колеса - оловянная бронза


(2.7)


где - коэффициент, учитывающий износ материала

- коэффициент долговечности при расчёте на сопротивление усталости по контактным напряжениям


(2.8)


- эквивалентное число циклов нагружений зубьев червячного колеса за весь срок службы


(2.9)


При типовом режиме нагружения 2,

- суммарное число циклов переменных напряжений


(2.10)





3. Определение основных параметров червячной передачи. Число витков (заходов) червяка зависит от передаточного числа червячной передачи:

При принимаем.

Число зубьев червячного колеса

Из условия отсутствия подрезания зубьев рекомендуется

В нашем примере это условие выполняется.

Коэффициент диаметра червяка рекомендуется принимать в диапазоне (для силовых передач):



При этом, минимально допустимое значение из условия жесткости червяка по данным .

По табл. 1 П.33 приложения 1П принимаем стандартное значение . Тогда


.


Модуль упругости материалов червяка и колеса: - сталь;

- бронза. Тогда приведенный модуль упругости :



При вращающем моменте на валу червячного колеса , и предварительная величина межосевого расстояния



По ряду Rа40 (см.табл. 1П.13 приложения 1П) принимаем стандартное ближайшее значение .

Предварительная величина модуля зацепления


.


По табл.1 П.33 приложения 1П принимаем стандартное значение .

Данной величине т соответствует ранее принятое стандартное значение .

Коэффициент смещения



При этом необходимо выполнения условия (допускается ).

В нашем случае это условие выполняется.

Размеры нарезанной части червяка (Рисунок 2.1).


Рисунок 2.1


а) делительный диаметр

;

б) начальный диаметр

;

в) делительный угол подъема линии витков

;

;

г) начальный угол подъема линии витков

; при ;

д) высота головки витков

; где - коэффициент высоты головки (для всех видов червяков);

е) диаметр вершин витков

;

ж) высота ножки витков

,

где для эвольвентных червяков коэффициент высоты ножки

;

ч) диаметр впадин витков

;

Длину нарезаемой части червяка определяем по уравнениям, приведенным в табл. 1П.34 приложения 1П. Согласно примечания 2 к данной таблице при определяем предварительно , при и (в данном диапазоне находится );

при ,

при .

В качестве расчетной величины принимаем наибольшее значение . Согласно примечания 1 к табл. 1П.34 при т< 10 мм для шлифуемого червяка увеличиваем , на 25 мм. Тогда .

Принимаем .

Размеры венца червячного колеса (Рисунок 2.2):


Рисунок 1.2


а) делительный диаметр

;

б) начальный диаметр (для передачи без смещения и со смещением)

;

в) высота головки зубьев

;

где - коэффициент высоты головки зубьев для передачи со смещением; для передачи без смещения ;

г) диаметр вершин зубьев колеса в среднем сечении

;

д) высота ножки зубьев

;

где для эвольвентных червяков коэффициент высоты ножки

;

е) диаметр впадин зубьев колеса в среднем сечении

;

ж) наибольший диаметр червячного колеса


;


Принимаем . Ширину венца червячного колеса определяют по различным формулам в зависимости от : при ;

В нашем примере при .

Принимаем . Условный угол обхвата червяка венцом колеса:


;


что находится в рекомендуемых пределах .

4. Проверочный расчет передачи на сопротивление контактной усталости активных поверхностей зубьев червячного колеса. Уточним скорость скольжения. Для этого определим окружную скорость червяка:


.


Тогда скорость скольжения


,


что отличается от предварительно рассчитанной ,

Проверяем ранее принятый материал венца червячного колеса оловянную бронзу. По табл. 1П.32 приложения 1П при в качестве венца червячного колеса принимаем оловянную бронзу БрО10Н1Ф1: способ отливки Ц - центробежный; ;;

Уточним :

Приведенный угол трения между стальным червяком и колесом из бронзы

принимают в зависимости от и материала венца:

В нашем примере линейным интерполированием при ,

.

Тогда КПД червячной передачи


.


Уточним вращающий момент на валу червячного колеса



Коэффициент динамической нагрузки при расчете червячной передачи:


при ; .


Коэффициент концентрации нагрузки при переменной нагрузке (для типовых режимов нагружения 1...5) . Принимаем .

Коэффициент расчетной нагрузки при расчете передачи на сопротивление контактной усталости:


.

Торцовый коэффициент перекрытия в средней плоскости червячного колеса


Расчетное контактное напряжение



Условие сопротивления контактной усталости:

.

В нашем примере это условие выполняется, .

5. Определение допускаемых напряжений изгиба при расчете зубьев колеса на сопротивление усталости при изгибе.

Для реверсивной передачи .

Определим коэффициент долговечности .

Суммарное число циклов перемены напряжений


,


где .

Для заданного типового режима нагружения 2 коэффициент эквивалентности .

Эквивалентное число циклов нагружения зубьев червячного колеса за весь срок службы :



Тогда коэффициент долговечности при расчете зубьев на сопротивление усталости при изгибе согласно формуле:


.


При этом должно выполняться условие

.

Данное условие выполняется и окончательно.

Тогда при для бронзы БрО10Н1Ф1:


.


6. Проверочный расчет зубьев червячного колеса на сопротивление усталости при изгибе. Окружная сила на червячном колесе


.


Эквивалентное число зубьев колеса


.


Коэффициент формы зуба червячного колеса принимают в зависимости от :

В нашем примере для линейным интерполированием .

Коэффициент расчетной нагрузки при расчете зубьев колеса на сопротивление усталости при изгибеn .

Нормальный модуль


.


Напряжения изгиба зубьев колеса



что меньше .

7. Проверочный расчет передачи на контактную прочность при кратковременной перегрузке. По формуле (2.34) в п.2.1 предельно допускаемые контактные напряжения для оловянной бронзы


.


Максимальные контактные напряжения при кратковременной перегрузке


.


- кратковременная перегрузка (см. исходные данные).

Контактная прочность зубьев червячного колеса при кратковременной перегрузке обеспечена, так как .

8. Проверочный расчет передачи на изгибную прочность при кратковременной перегрузке. Как и ранее, расчет проводим только для зубьев червячного колеса, так как витки червяка по форме и материалу значительно прочнее зубьев колеса.

Предельно допускаемые напряжения изгиба


.


Максимальные напряжения изгиба при кратковременной перегрузке


.


Изгибная прочность зубьев червячного колеса при кратковременной перегрузке обеспечивается, так как


.


9. Тепловой расчет червячной передачи. Данный расчет сводится к определению температуры масла в картере редуктора по формуле


(2.11)


где ; - мощность на валу червяка, Вт; - коэффициент теплоотдачи,

Вт/(м2 -°C); для корпусов при естественном охлаждении Вт/(м2 -°C); А -площадь поверхности охлаждения корпуса за исключением поверхности дна, которой корпус прилегает к раме или плите, м2 (определяется по чертежу редуктора); - коэффициент, учитывающий отвод теплоты от корпуса редуктора в раму или плиту.

Нормальная работа червячной передачи обеспечивается при выполнении условия , где - для редукторных смазочных материалов и

- для авиационных.


,


что допустимо.

10. Определение сил, действующих в червячном зацеплении.

Окружная сила на червяке:



Окружная сила на червячном колесе:



Осевая сила на червяке:

Осевая сила на червячном колесе:

Радиальная сила на червяке и червячном колесе:



3. Выбор типов подшипников качения и схем установки


Быстроходный вал крепится по схеме 3 (одна опора фиксирующая, вторая плавающая). Вал фиксируется двумя подшипниками слева (Рисунок 3.1).


Рисунок 3.1


Выбираем конические роликовые подшипники для фиксирующей опоры, а для плавающей опоры используем радиальный шариковый подшипник.

Промежуточный вал крепится по схеме 1 (враспор) (Рисунок 3.3).


Рисунок 3.3


В качестве опор применим роликовые радиально-упорные подшипники.

Тихоходный вал крепится по схеме 4 (плавающий вал) (Рисунок 3.2).


Рисунок 3.2


В качестве опор применим роликовые радиальные подшипники с короткими цилиндрическими роликами типа 2000(ГОСТ8328-75) без бортов на наружном кольце. С помощью пружинных колец внутренние кольца подшипников закрепляют на валу, а наружные - в корпусе. Отсутствие бортов на наружном кольце подшипника обеспечивает осевое плавание вала вместе с внутренними кольцами и комплектами роликов относительно неподвижных наружных колец.

Для опор приводного вала конвейера, размещённых в различных корпусах, используем сферические подшипники качения, которые закрепим по схеме 3 (одна опора фиксирующая, вторая плавающая). Вал фиксируется одним подшипником (Рисунок 3.4).


Рисунок 3.4



4. Проектный расчёт и разработка конструкции валов редуктора. Выбор типоразмеров подшипников качения и муфт


4.1 Быстроходный вал


Разработать конструкцию вала червяка по следующим исходным данным:

а) прототип конструкции – Рисунок 2.1;

б) вращающий момент на валу;

в) вал червяка соединяется с валом электродвигателя 4А100S2УЗ посредством упругой втулочно-пальцевой муфты МУВП (ГОСТ 21424 - 93);

г) форма конца вала коническая;

д) геометрические размеры нарезаемой части червяка:;; ; .

е) условия эксплуатации привода: работа в закрытом помещении, климатическое исполнение - У.

Порядок разработки

Подшипники вала червяка установлены по схеме 3, вариант 3.2 (одна опора

фиксирующая сдвоенная, вторая - плавающая). Конические роликоподшипники фиксирующей опоры установлены в стакане и регулирование зазоров в них проводится набором тонких металлических прокладок, размещаемых между фланцами подшипниковой крышки и стакана. Внутренние кольца подшипников поджаты к ступени вала диаметром круглой шлицевой гайкой с многолапчатой стопорной шайбой. Для того, чтобы шлицевая гайка не касалась сепаратора, выступающего за пределы наружного кольца, между торцами внутреннего кольца левого подшипника и гайки установлена дистанционная втулка (кольцо). В качестве плавающей опоры используется радиальный шарикоподшипник, внутреннее кольцо которого закреплено на валу с помощью пружинного, упорного плоского кольца. По табл. 1П.2 приложения 1П размеры вала электродвигателя 4А100S2У3 диаметр , длина .

В схеме редуктора вал червяка является быстроходным (входным) валом. Согласно рекомендаций, изложенных в п. 5.1, конструирование быстроходного вала начинаем с определения диаметра его концевого участка (первая ступень) по следующей формуле при и :


.


Так как входной конец данного вала соединяется с валом электродвигателя посредством муфты, то необходимо выдерживать соотношение .

По ГОСТ 12081 - 72 на конические концы валов (табл. 2П.2 приложения 2П)

принимаем размеры конца вала червяка (первой ступени): диаметр , длина (исполнение 1 - длинные). Крепление полумуфты с коническим отверстием на конце вала червяка будем осуществлять с помощью гайки М16х1,5 со стопорной шайбой, как показано на Рисунке 4.1.


Рисунок 4.1


Поэтому принимаем конец вала червяка типа 1. Принятый диаметр соответствует табличному значению для муфты МУВП (см. табл. 2П.39 приложения 2П)

Диаметр второй ступени принимаем , что соответствует размерам стандартной манжеты (см. табл. 2П.10 приложения 2П), устанавливаемой в подшипниковой крышке на второй ступени.

Определим диаметр третьей ступени, на которой выполняется резьба для круглой шлицевой гайки. По табл. 2П.8 приложения 2П ближайшей большей по отношению к является резьба М33х1,5. Однако диаметр ступени перед данной резьбой (в таблице обозначен ) должен быть не более 29,5 мм. В нашем случае размер данной ступени (у нас это ступень ) составляет 30 мм, что недопустимо. Окончательно принимаем, что на третьей ступени будет выполнена резьба М36х1,5. Для выхода резьбонарезного инструмента предусматриваем канавку, размеры которой принимаем по табл. 2П.5 приложения 2П для исполнения «узкая».

Па четвертой ступени вала диаметром устанавливаются конические роликоподшипники, которые при сборке вала должны свободно проходить над третьей ступенью . Принимаем , что соответствует диаметрам подшипников. По табл. 2П.15 приложения 2П выбираем предварительно конические роликоподшипники средней серии 7308 (ТУ 37.006.162 - 89).

Пятая ступень вала диаметром является буртиком (заплечиком) для подшипника 7308. По табл. 2П.18 приложения 2П . Так как для червяка , то с целью обеспечения свободного выхода инструмента при нарезании витков () принимаем окончательно .

Размеры нарезаемой части червяка (шестая ступень): ; ; ; .

Размеры остальных ступеней вала червяка: ; .

По табл. 2П.11 приложения 2П, исходя из , выбираем предварительно радиальный, шарикоподшипник легкой серии 80208. По табл. 2П.17 приложения 2П для подшипника 208 диаметр буртика (заплечика) . Но так как седьмая ступень вала, являющаяся буртиком для подшипника 80208, имеет размер , что вполне допустимо.

Расстояние между опорами вала червяка определяется конструктивно из условия обеспечения зазора (где -толщина стенки нижней части корпуса редуктора) между червячным колесом и приливами для подшипниковых гнезд фиксирующей и плавающей опор.

Наружный диаметр дистанционной втулки, устанавливаемой между шлицевой гайкой и торцом внутреннего кольца левого конического роликоподшипника средней серии по табл. 2П.18 приложения 2П . Длину втулки принимаем конструктивно.

Разработку конструкции вала червяка завершаем выбором стандартной муфты МУВП по ГОСТ 21424 - 93 (табл. 2П.39 приложения 2П). Муфта МУВП соединяет вал электродвигателя цилиндрической формы диаметром и длиной с концом вала червяка конической формы диаметром и длиной . Расчетный вращающий момент при выборе муфты согласно условия (5.5) при коэффициенте режима нагрузки (привод индивидуальный реверсивный) и вращающем моменте на валу муфты .



Для соединяемых валов диаметрами 25 и 28 мм в ГОСТе предусмотрена

муфта с номинальным вращающим моментом (). Данная муфта подходит, так как выполняется условие <.

Примем исполнения полумуфт. На вал электродвигателя устанавливается полумуфта исполнения 1 - с цилиндрическим отверстием для длинных концов валов по ГОСТ 12080 - 66 (длина ступицы ). На входной конец вала червяка устанавливается полумуфта исполнения 4 - с коническим отверстием для коротких концов валов по ГОСТ 12081 - 72 (длина ступицы ). Обозначение муфты МУВП с номинальным вращающим моментом , одна из полумуфт диаметром , исполнения 1, другая диаметром , исполнения 4, климатического исполнения У (работа в районах с умеренным климатом) категории размещения 3 (работа в закрытом помещении); Муфта упругая втулочпо-пальцевая 125-28-1-25-4 УЗ ГОСТ 21424 - 93.

Следует обратить внимание, что в обозначении муфты МУВП после значения Т указывают обозначение полумуфты с отверстиями для крепления пальцев.


4.2 Промежуточный вал


Схема промежуточного вала показана на Рисунке 4.2



Рисунок 4.2


На промежуточном валу заодно целое с валом выполнена косозубая шестерня тихоходной цилиндрической ступени (; ; ; ; ) и установлена насадная косозубая шестерня. Согласно рекомендаций, изложенных в п. 5.1, конструирование промежуточного вала начинаем с определения диаметра второй ступени, на которой установлена насадная косозубая шестерня. По формуле (5.4) диаметр вала под ступицей насадного червячного колеса (обозначим его ) при и :


.


По ряду Rа40 (см. табл. 1П.13 приложения 1П) принимаем .

Между ступицей косозубой шестерни и правым подшипником предполагаем установку распорного (дистанционного) кольца. С целью снижения концентрации напряжений предусматриваем минимальный перепад диаметров и соответственно первой и второй ступеней вала. Принимаем , что соответствует диаметрам d внутренних колец подшипников качения. Исходя из размера , по табл. 2П.15 приложения 2П выбираем роликовый конический однорядный подшипник средней серии 7308 (ГОСТ 27365 - 87). Второй подшипник, устанавливаемый на седьмой ступени вала, принимаем такого же размера.

Распорное кольцо между ступицей косозубой шестерни и правым подшипником выполняет роль буртика как для подшипника, так и для шестерни. Наружный диаметр распорного кольца со стороны подшипника, служащего для него буртиком (заплечиком), согласно табл.

2П.18 приложения 2П составляет . По табл. 2П.З приложения 2П размер фаски в отверстии ступицы насадной конического косозубой шестерни. Тогда наружный диаметр распорного кольца со стороны ступицы косозубой шестерни, выполняющего роль буртика для шестерни (обозначим его ), согласно условия (5.1);