Подбор теплообменника для проведения процесса охлаждения и конденсации пара толуола (123670)

Посмотреть архив целиком

Министерство образования Республики Беларусь


Учреждение образования

«Белорусский государственный технологический университет»


Кафедра процессов и аппаратов химических производств






РАСЧЕТНО – ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе

по процессам и аппаратам химических технологий

на тему "Подбор теплообменника для проведения процесса охлаждения и конденсации пара толуола"




Разработал

студент 3 курса

инженерно-экономического факультета

специальности 1-43 01 06 02

Стригельский А. В.

Руководитель

Калишук Д. Г.




Минск 2005


Содержание


Введение

  1. Литературный обзор

    1. Теоретические основы теплообмена

    2. Основные типы теплообменников

      1. Назначение и классификация теплообменных аппаратов

      2. Обзор типовых теплообменных аппаратов

    3. Современное аппаратурно-технологическое оформление процесса теплообмена

  2. Расчет холодильника первой ступени

    1. Определение тепловой нагрузки

    2. Определение расхода и тепловой нагрузки воздуха

    3. Вычисление средней разности температур теплоносителей

    4. Нахождение ориентировочной поверхности теплообмена Fор и выбор рассчитываемого теплообменника

    5. Расчет коэффициента теплопередачи K

    6. Расчёт гидравлического сопротивления теплообменника

  3. Расчет конденсатора паров толуола

    1. Определение тепловой нагрузки

    2. Определение тепловой нагрузки для второго теплоносителя ─ жидкого толуола и его расхода

    3. Вычисление средней разности температур теплоносителей

    4. Нахождение ориентировочной поверхности теплообмена Fор и выбор рассчитываемого теплообменника

    5. Уточненный расчет поверхности теплопередачи

    6. Расчёт гидравлического сопротивления теплообменника

Заключение

Список использованных литературных источников

Приложение А

Приложение Б



Введение


Современная химическая промышленность в Беларуси развивается с 60-х годов в комплексе с нефтеперерабатывающими и нефтехимическими предприятиями. Интенсивному развитию в республике этой отрасли способствовал ряд благоприятных факторов: большая потребность народного хозяйства в химической и нефтехимической продукции и высокая эффективность её применения в промышленности и сельском хозяйстве; открытие богатых запасов калийных солей на юге Минской области и нефтяных месторождений в Гомельской области; разветвлённая сеть железных и автомобильных дорог.

Начиная с 1958 года, в республике осуществляется развёрнутое строительство новых, расширение и реконструкция действующих химических предприятий. Химическая промышленность стала одной из ведущих отраслей хозяйства, охватывающей многочисленные производства разнообразных неорганических и органических продуктов, имеющих важное значение. Возникли и получили промышленное применение процессы адсорбции, экстракции, молекулярной дистилляции и др.

Современная химическая промышленность насчитывает множество разнообразных производств, часто сильно различающихся химической природой и физическими свойствами исходных веществ, промежуточных и конечных продуктов, а также характером и условиями протекания технологических процессов. Несмотря на перечисленные различия, число элементарных процессов, повторяющихся в разных сочетаниях во всех химических производствах, едва достигает двадцати. Из этого ограниченного числа элементарных процессов или из некоторой их части, но в различной последовательности и при разных рабочих условиях строится технология любого химического производства.



1 Литературный обзор


1.1 Теоретические основы теплообмена


При тепловых процессах тепло передаётся от одного вещества к другому. Для самопроизвольного переноса тепла одно из этих веществ должно быть более нагрето, чем другое. Вещества, участвующие в процессе перехода тепла (теплообмен), называются теплоносителями. Вещество с более высокой температурой, которое в процессе теплообмена отдаёт тепло, называется горячим теплоносителем, а вещество с более низкой температурой, воспринимающее тепло, холодным теплоносителем.

Существуют два основных способа проведения тепловых процессов: путём непосредственного соприкосновения теплоносителей и передачей тепла через стенку, разделяющую теплоносители.

При передаче тепла непосредственным соприкосновением теплоносители обычно смешиваются друг с другом, что не всегда допустимо; поэтому данный способ применяется сравнительно редко, хотя он значительно проще в аппаратурном оформлении.

При передаче тепла через стенку теплоносители не смешиваются, и каждый из них движется по отдельному каналу; поверхность стенки, разделяющей теплоносители, используются для передачи тепла и называется поверхностью теплообмена.

Различают установившийся и неустановившийся процессы теплопередачи. При установившемся (стационарном) процессе температуры в каждой точке аппарата не изменяются во времени, тогда как при неустановившемся (нестационарном) процессе температуры изменяются во времени. Установившиеся процессы соответствуют непрерывной работе аппаратов с непрерывным режимом; неустановившиеся процессы протекают

в аппаратах периодического действия, а также при пуске и остановке аппаратов непрерывного действия и изменении режима их работы.

Передача тепла от одного тела к другому может происходить посредством теплопроводности, конвекции и лучеиспускания.

Передача тепла теплопроводностью осуществляется путём переноса тепла при непосредственном соприкосновении отдельных частиц тела. При этом энергия передаётся от одной частицы к другой в результате колебательного движения частиц, без их перемещения друг относительно друга.

Передача тепла конвекцией происходит только в жидкостях и газах путём перемещения их частиц. Перемещение частиц обусловлено движением всей массы жидкости или газа (вынужденная или принудительная конвекция), либо разностью плотностей жидкости в разных точках объёма, вызываемой неравномерным распределением температуры в массе жидкости или газа (свободная, или естественная, конвекция).

Конвекция всегда сопровождается передачей тепла посредством теплопроводности.

Передача тепла лучеиспусканием происходит путём переноса энергии в виде электромагнитных волн. В этом случае тепловая энергия превращается в лучистую энергию (излучение), которая проходит через пространство и затем снова превращается в тепловую при поглощении энергии другим телом (поглощение).

Рассмотренные виды передачи тепла редко встречаются в чистом виде; обычно они сопутствуют друг другу (сложный теплообмен). Так при передаче тепла через стенку перенос тепла от горячего теплоносителя к стенке и от стенки к холодному теплоносителю осуществляется конвекцией, а через стенку – путём теплопроводности.

Теплообменными аппаратами, или теплообменниками, называются устройства для передачи тепла от одних сред (горячих теплоносителей) к другим (холодным теплоносителям). В химической технологии теплообменные аппараты применяются для нагревания и охлаждения веществ в различных агрегатных состояниях, испарения жидкостей и конденсации паров, перегонки и сублимации, абсорбции и адсорбции, расплавления твёрдых тел и кристаллизации, отвода и подвода тепла при проведении экзо- и эндотермических реакций и т. д. соответственно своему назначению теплообменные аппараты называют подогревателями, холодильниками, испарителями, конденсаторами, дистилляторами, сублиматорами, плавителями и т. п.

Количество тепла, передаваемого в единицу времени от одного тела к другому, называется тепловым потоком, и выражается в Дж/сек или Вт, т. е. единицах мощности.

При теплообмене между теплоносителями происходит уменьшение энтальпии (теплосодержания) горячего теплоносителя и увеличение энтальпии холодного теплоносителя. Пусть количество горячего теплоносителя, его начальная и конечная энтальпия равны соответственно G кг/сек I1 и I2 Дж/кг, а количество холодного теплоносителя и его начальная и конечная энтальпия g кг/сек i1 и i2 Дж/кг.

Примем также, что количество тепла, передаваемое от горячего теплоносителя к холодному, составляет Q Вт (эта величина называется тепловой нагрузкой аппарата), а потери тепла в окружающую среду равны Qn Вт. Тогда уравнение теплового баланса запишется в виде:


G·I1+g·i1 = G·I2 + g·i2 + Qn , (1)


Произведя перегруппировку, получим:


G·(I1I2) = g·(i2i1) + Qn, (2)


Величина Qгор = G·(I1 – I2) представляет собой количество тепла, отданного горячим теплоносителем, а величина Qхол = g·(i2 – i1) количество тепла, сообщённое холодному теплоносителю.

Таким образом:


Qгор = Qхол + Qn , (3)


Т. е. тепло, отданное горячим теплоносителем, частично передаётся холодному теплоносителю и частично расходуется на компенсацию потерь в окружающую среду.

В теплообменных аппаратах потери тепла обычно невелики (не более 2 – 3 %) и ими можно пренебречь. Тогда уравнение теплового баланса примет вид:


Q = Qгор = Qхол , (4)


или


Q = G·(I1I2) = g·(i2i1), (5)


Расчет теплообменного аппарата включает определение необходимой поверхности теплопередачи, выбор типа аппарата и нормализованного варианта конструкции, удовлетворяющих заданным технологическим условиям оптимальным образом. Необходимую поверхность теплопередачи определяют из основного уравнения теплопередачи:


Случайные файлы

Файл
53983.doc
68313.doc
73802.rtf
27661-1.rtf
35776.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.